#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // rand #include // time #include #define INDEXED_TEST struct vertex { nv::ivec2 coord; nv::vec4 color; vertex() {} vertex( const nv::ivec2& coord, const nv::vec4& color ) : coord( coord ), color( color ) {} }; #ifndef INDEXED_TEST struct quad { vertex vtx[6]; quad( const nv::ivec2& coorda, const nv::ivec2& coordb, const nv::vec4& color ) { vtx[0].color = color; vtx[1].color = color; vtx[2].color = color; vtx[3].color = color; vtx[4].color = color; vtx[5].color = color; vtx[0].coord = coorda; vtx[1].coord = nv::ivec2( coorda.x, coordb.y ); vtx[2].coord = coordb; vtx[3].coord = coordb; vtx[4].coord = nv::ivec2( coordb.x, coorda.y ); vtx[5].coord = coorda; } quad( const nv::ivec2& coorda, const nv::ivec2& coordb, const nv::ivec2& coordc, const nv::ivec2& coordd, const nv::vec4& color ) { vtx[0].color = color; vtx[1].color = color; vtx[2].color = color; vtx[3].color = color; vtx[4].color = color; vtx[5].color = color; vtx[0].coord = coorda; vtx[1].coord = coordb; vtx[2].coord = coordc; vtx[3].coord = coordc; vtx[4].coord = coordd; vtx[5].coord = coorda; } }; #endif #ifdef INDEXED_TEST typedef nv::indexed_sliced_buffer gcache; typedef nv::indexed_buffer_slice gslice; #else typedef nv::sliced_buffer gcache; typedef nv::buffer_slice gslice; #endif struct app_window { app_window( gcache* cache, const glm::ivec2& a, const glm::ivec2& b, const glm::vec4& color ) : m_slice( cache ), m_simple( false ), m_a( a ), m_b( b ), m_c( color ) { create_complex(); } void change_color( const glm::vec4& color ) { m_c = color; glm::vec4 dcolor( color.x * 0.5, color.y * 0.5, color.z * 0.5, 1.0 ); #ifdef INDEXED_TEST std::vector& v = m_slice.lock_vertices(); size_t size = v.size(); size_t dcount = 8; size_t dmin = 8; size_t count = size; #else std::vector& v = m_slice.lock(); size_t size = v.size(); size_t dcount = (size - 1) * 6; size_t dmin = 1; size_t count = size * 6; #endif vertex* vtx = (vertex*)v.data(); if ( size > dmin ) { for (size_t i = 0; i < dcount; ++i ) vtx[i].color = dcolor; for (size_t i = dcount; i < count; ++i ) vtx[i].color = color; } else { for (size_t i = 0; i < count; ++i ) vtx[i].color = color; } } void simplify_toggle() { if ( !m_simple ) { NV_LOG( nv::LOG_INFO, "Simplifing" ); create_simple(); } else { NV_LOG( nv::LOG_INFO, "Complexifing" ); create_complex(); } } void create_simple() { #ifdef INDEXED_TEST std::vector& v = m_slice.lock_vertices(); std::vector& i = m_slice.lock_indices(); v.clear(); i.clear(); v.emplace_back( m_a, m_c ); v.emplace_back( nv::ivec2( m_a.x, m_b.y ), m_c ); v.emplace_back( m_b, m_c ); v.emplace_back( nv::ivec2( m_b.x, m_a.y ), m_c ); nv::uint16 tmp[] = { 0, 1, 2, 2, 3, 0 }; i.insert( i.end(), tmp, std::end( tmp ) ); #else std::vector& v = m_slice.lock(); v.clear(); v.emplace_back( m_a, m_b, m_c ); #endif m_simple = true; } void create_complex() { glm::vec4 dcolor( m_c.x * 0.5, m_c.y * 0.5, m_c.z * 0.5, 1.0 ); nv::ivec2 a2( m_a.x, m_b.y ); nv::ivec2 b2( m_b.x, m_a.y ); nv::ivec2 t1( 10, 10 ); nv::ivec2 t2( -10, 10 ); #ifdef INDEXED_TEST std::vector& v = m_slice.lock_vertices(); std::vector& i = m_slice.lock_indices(); v.clear(); i.clear(); v.emplace_back( m_a- t1, dcolor ); // 0 v.emplace_back( a2 + t2, dcolor ); // 1 v.emplace_back( m_b+ t1, dcolor ); // 2 v.emplace_back( b2 - t2, dcolor ); // 3 v.emplace_back( m_a, dcolor ); // 4 v.emplace_back( a2, dcolor ); // 5 v.emplace_back( m_b, dcolor ); // 6 v.emplace_back( b2, dcolor ); // 7 nv::uint16 tmp[] = { 0, 4, 7, 7, 3, 0, 0, 1, 5, 5, 4, 0, 1, 2, 6, 6, 5, 1, 2, 3, 7, 7, 6, 2, }; i.insert( i.end(), tmp, std::end( tmp ) ); v.emplace_back( m_a, m_c ); // 8 v.emplace_back( a2, m_c ); // 9 v.emplace_back( m_b, m_c ); // 10 v.emplace_back( b2, m_c ); // 11 nv::uint16 tmp2[] = { 8, 9, 10, 10, 11, 8 }; i.insert( i.end(), tmp2, std::end( tmp2 ) ); #else std::vector& v = m_slice.lock(); v.clear(); v.emplace_back( m_a - t1, m_a, b2, b2 - t2, dcolor ); v.emplace_back( m_a - t1, a2 + t2, a2, m_a, dcolor ); v.emplace_back( a2 + t2, m_b + t1, m_b, a2, dcolor ); v.emplace_back( m_b + t1, b2 - t2, b2, m_b, dcolor ); v.emplace_back( m_a, m_b, m_c ); #endif m_simple = false; } void draw() { m_slice.commit(); } gslice m_slice; bool m_simple; nv::ivec2 m_a; nv::ivec2 m_b; nv::vec4 m_c; }; class application { public: application(); bool initialize(); bool run(); void kill_window(); void spawn_window(); void simplify_window(); void recolor_window(); ~application(); protected: nv::device* m_device; nv::window* m_window; nv::clear_state m_clear_state; nv::render_state m_render_state; gcache* m_quad_cache; std::vector m_windows; nv::program* m_program; nv::vertex_array* m_va; unsigned int m_count; int m_coord_loc; int m_color_loc; }; application::application() { m_device = new nv::gl_device(); m_window = m_device->create_window( 800, 600 ); m_clear_state.buffers = nv::clear_state::COLOR_AND_DEPTH_BUFFER; m_render_state.depth_test.enabled = false; m_render_state.culling.enabled = false; m_render_state.blending.enabled = false; m_render_state.blending.src_rgb_factor = nv::blending::SRC_ALPHA; m_render_state.blending.dst_rgb_factor = nv::blending::ONE_MINUS_SRC_ALPHA; m_render_state.blending.src_alpha_factor = nv::blending::SRC_ALPHA; m_render_state.blending.dst_alpha_factor = nv::blending::ONE_MINUS_SRC_ALPHA; } bool application::initialize() { { m_program = m_device->create_program( nv::slurp( "cachebuf.vert" ), nv::slurp( "cachebuf.frag" ) ); m_coord_loc = m_program->get_attribute("coord")->get_location(); m_color_loc = m_program->get_attribute("color")->get_location(); m_va = m_device->create_vertex_array(); #ifdef INDEXED_TEST m_quad_cache = new gcache( m_device, nv::DYNAMIC_DRAW, 200, 200 ); m_va->set_index_buffer( m_quad_cache->get_index_buffer(), nv::USHORT, false ); nv::vertex_buffer* buffer = m_quad_cache->get_vertex_buffer(); #else m_quad_cache = new gcache( m_device, nv::DYNAMIC_DRAW, 20, true ); nv::vertex_buffer* buffer = (nv::vertex_buffer*)m_quad_cache->get_buffer(); #endif m_va->add_vertex_buffer( m_coord_loc, buffer, nv::INT, 2, 0, sizeof( vertex ), false ); m_va->add_vertex_buffer( m_color_loc, buffer, nv::FLOAT, 4, offset_of( &vertex::color ), sizeof( vertex ), false ); } return true; } bool application::run() { int keypress = 0; m_program->bind(); glm::mat4 projection = glm::ortho( 0.0f, 800.0f, 600.0f, 0.0f, -1.0f, 1.0f ); m_program->set_uniform( "projection", glm::mat4(projection) ); while(!keypress) { for ( auto& w : m_windows ) { w.draw(); } if (m_quad_cache->commit() ) { #ifdef INDEXED_TEST m_va->set_index_buffer( m_quad_cache->get_index_buffer() ); nv::vertex_buffer* buffer = m_quad_cache->get_vertex_buffer(); #else nv::vertex_buffer* buffer = (nv::vertex_buffer*)m_quad_cache->get_buffer(); #endif m_va->update_vertex_buffer( m_coord_loc, buffer, false ); m_va->update_vertex_buffer( m_color_loc, buffer, false ); } m_window->get_context()->clear( m_clear_state ); m_program->bind(); // m_program->set_uniform( "tex", 0 ); #ifdef INDEXED_TEST size_t draw_size = m_quad_cache->get_index_size(); #else size_t draw_size = m_quad_cache->get_size() * 6; #endif m_window->get_context()->draw( nv::TRIANGLES, m_render_state, m_program, m_va, draw_size ); m_window->swap_buffers(); nv::io_event event; while(m_window->poll_event(event)) { switch (event.type) { case nv::EV_QUIT: keypress = 1; break; case nv::EV_KEY: if (event.key.pressed) { switch (event.key.code) { case nv::KEY_N : spawn_window(); break; case nv::KEY_S : simplify_window(); break; case nv::KEY_C : recolor_window(); break; case nv::KEY_K : kill_window(); break; case nv::KEY_ESCAPE : keypress = 1; break; } } break; } } } return true; } void application::spawn_window() { glm::ivec2 a( std::rand() % 600, std::rand() % 400 ); glm::ivec2 b( std::rand() % 200, std::rand() % 200 ); NV_LOG( nv::LOG_INFO, "Spawn (" << a.x << "," << a.y << "x" << b.x << "," << b.y << ")" ); m_windows.emplace_back( m_quad_cache, a, a + b, glm::vec4( 0, 0, 1, 1 ) ); } void application::kill_window() { if ( m_windows.size() == 0 ) return; size_t index = rand() % m_windows.size(); m_windows.erase( m_windows.begin() + index ); } void application::recolor_window() { if ( m_windows.size() == 0 ) return; size_t index = rand() % m_windows.size(); m_windows[ index ].change_color( nv::vec4( (float)rand() / float(RAND_MAX), (float)rand() / float(RAND_MAX), (float)rand() / float(RAND_MAX), 1.0 ) ); } void application::simplify_window() { if ( m_windows.size() == 0 ) return; size_t index = rand() % m_windows.size(); NV_LOG( nv::LOG_INFO, "Simplify " << index ); m_windows[ index ].simplify_toggle(); } application::~application() { m_windows.clear(); delete m_quad_cache; delete m_program; delete m_va; delete m_window; delete m_device; } int main(int, char* []) { std::srand((unsigned int) std::time(0) ); nv::logger log(nv::LOG_TRACE); log.add_sink( new nv::log_file_sink("log.txt"), nv::LOG_TRACE ); log.add_sink( new nv::log_console_sink(), nv::LOG_TRACE ); NV_LOG( nv::LOG_NOTICE, "Logging started" ); application app; if ( app.initialize() ) { app.run(); } NV_LOG( nv::LOG_NOTICE, "Logging stopped" ); return 0; }