source: trunk/src/image/miniz.cc

Last change on this file was 534, checked in by epyon, 8 years ago

CONTINUED:

  • getting rid of size_t
  • datatypes now restricted to uint32 size
  • 64-bit compatibility
  • copyright updates where modified
File size: 126.8 KB
Line 
1#include "nv/image/miniz.hh"
2#include "nv/core/profiler.hh"
3
4using namespace nv;
5
6#if NV_COMPILER == NV_CLANG
7#pragma clang diagnostic ignored "-Wunused-macros"
8#pragma clang diagnostic ignored "-Wold-style-cast"
9#pragma clang diagnostic ignored "-Wsign-conversion"
10#endif
11
12#if defined( _M_IX86 ) || defined( _M_X64 ) || defined( __i386__ ) || defined( __i386 ) || defined( __i486__ ) || defined( __i486 ) || defined( i386 ) || defined( __ia64__ ) || defined( __x86_64__ )
13// Set MINIZ_USE_UNALIGNED_LOADS_AND_STORES to 1 on CPU's that permit efficient integer loads and stores from unaligned addresses.
14#define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 1
15#endif
16
17#ifdef __cplusplus
18extern "C" {
19#endif
20
21        // ------------------- zlib-style API Definitions.
22
23        // For more compatibility with zlib, miniz.c uses unsigned long for some parameters/struct members. Beware: mz_ulong can be either 32 or 64-bits!
24        typedef unsigned long mz_ulong;
25
26        // mz_free() internally uses the MZ_FREE() macro (which by default calls free() unless you've modified the MZ_MALLOC macro) to release a block allocated from the heap.
27        void mz_free( void *p );
28
29#define MZ_ADLER32_INIT (1)
30        // mz_adler32() returns the initial adler-32 value to use when called with ptr==NULL.
31        mz_ulong mz_adler32( mz_ulong adler, const unsigned char *ptr, size_t buf_len );
32
33#define MZ_CRC32_INIT (0)
34        // mz_crc32() returns the initial CRC-32 value to use when called with ptr==NULL.
35        mz_ulong mz_crc32( mz_ulong crc, const unsigned char *ptr, size_t buf_len );
36
37        // Compression strategies.
38        enum { MZ_DEFAULT_STRATEGY = 0, MZ_FILTERED = 1, MZ_HUFFMAN_ONLY = 2, MZ_RLE = 3, MZ_FIXED = 4 };
39
40        // Method
41#define MZ_DEFLATED 8
42
43#ifndef MINIZ_NO_ZLIB_APIS
44
45        // Heap allocation callbacks.
46        // Note that mz_alloc_func parameter types purpsosely differ from zlib's: items/size is size_t, not unsigned long.
47        typedef void *( *mz_alloc_func )( void *opaque, size_t items, size_t size );
48        typedef void( *mz_free_func )( void *opaque, void *address );
49        typedef void *( *mz_realloc_func )( void *opaque, void *address, size_t items, size_t size );
50
51#define MZ_VERSION          "9.1.15"
52#define MZ_VERNUM           0x91F0
53#define MZ_VER_MAJOR        9
54#define MZ_VER_MINOR        1
55#define MZ_VER_REVISION     15
56#define MZ_VER_SUBREVISION  0
57
58        // Flush values. For typical usage you only need MZ_NO_FLUSH and MZ_FINISH. The other values are for advanced use (refer to the zlib docs).
59        enum { MZ_NO_FLUSH = 0, MZ_PARTIAL_FLUSH = 1, MZ_SYNC_FLUSH = 2, MZ_FULL_FLUSH = 3, MZ_FINISH = 4, MZ_BLOCK = 5 };
60
61        // Return status codes. MZ_PARAM_ERROR is non-standard.
62        enum { MZ_OK = 0, MZ_STREAM_END = 1, MZ_NEED_DICT = 2, MZ_ERRNO = -1, MZ_STREAM_ERROR = -2, MZ_DATA_ERROR = -3, MZ_MEM_ERROR = -4, MZ_BUF_ERROR = -5, MZ_VERSION_ERROR = -6, MZ_PARAM_ERROR = -10000 };
63
64        // Compression levels: 0-9 are the standard zlib-style levels, 10 is best possible compression (not zlib compatible, and may be very slow), MZ_DEFAULT_COMPRESSION=MZ_DEFAULT_LEVEL.
65        enum { MZ_NO_COMPRESSION = 0, MZ_BEST_SPEED = 1, MZ_BEST_COMPRESSION = 9, MZ_UBER_COMPRESSION = 10, MZ_DEFAULT_LEVEL = 6, MZ_DEFAULT_COMPRESSION = -1 };
66
67        // Window bits
68#define MZ_DEFAULT_WINDOW_BITS 15
69
70        struct mz_internal_state;
71
72        // Compression/decompression stream struct.
73        typedef struct mz_stream_s
74        {
75                const unsigned char *next_in;     // pointer to next byte to read
76                unsigned int avail_in;            // number of bytes available at next_in
77                mz_ulong total_in;                // total number of bytes consumed so far
78
79                unsigned char *next_out;          // pointer to next byte to write
80                unsigned int avail_out;           // number of bytes that can be written to next_out
81                mz_ulong total_out;               // total number of bytes produced so far
82
83                char *msg;                        // error msg (unused)
84                struct mz_internal_state *state;  // internal state, allocated by zalloc/zfree
85
86                mz_alloc_func zalloc;             // optional heap allocation function (defaults to malloc)
87                mz_free_func zfree;               // optional heap free function (defaults to free)
88                void *opaque;                     // heap alloc function user pointer
89
90                int data_type;                    // data_type (unused)
91                mz_ulong adler;                   // adler32 of the source or uncompressed data
92                mz_ulong reserved;                // not used
93        } mz_stream;
94
95        typedef mz_stream *mz_streamp;
96
97        // Returns the version string of miniz.c.
98        const char *mz_version( void );
99
100        // mz_deflateInit() initializes a compressor with default options:
101        // Parameters:
102        //  pStream must point to an initialized mz_stream struct.
103        //  level must be between [MZ_NO_COMPRESSION, MZ_BEST_COMPRESSION].
104        //  level 1 enables a specially optimized compression function that's been optimized purely for performance, not ratio.
105        //  (This special func. is currently only enabled when MINIZ_USE_UNALIGNED_LOADS_AND_STORES and MINIZ_LITTLE_ENDIAN are defined.)
106        // Return values:
107        //  MZ_OK on success.
108        //  MZ_STREAM_ERROR if the stream is bogus.
109        //  MZ_PARAM_ERROR if the input parameters are bogus.
110        //  MZ_MEM_ERROR on out of memory.
111        int mz_deflateInit( mz_streamp pStream, int level );
112
113        // mz_deflateInit2() is like mz_deflate(), except with more control:
114        // Additional parameters:
115        //   method must be MZ_DEFLATED
116        //   window_bits must be MZ_DEFAULT_WINDOW_BITS (to wrap the deflate stream with zlib header/adler-32 footer) or -MZ_DEFAULT_WINDOW_BITS (raw deflate/no header or footer)
117        //   mem_level must be between [1, 9] (it's checked but ignored by miniz.c)
118        int mz_deflateInit2( mz_streamp pStream, int level, int method, int window_bits, int mem_level, int strategy );
119
120        // Quickly resets a compressor without having to reallocate anything. Same as calling mz_deflateEnd() followed by mz_deflateInit()/mz_deflateInit2().
121        int mz_deflateReset( mz_streamp pStream );
122
123        // mz_deflate() compresses the input to output, consuming as much of the input and producing as much output as possible.
124        // Parameters:
125        //   pStream is the stream to read from and write to. You must initialize/update the next_in, avail_in, next_out, and avail_out members.
126        //   flush may be MZ_NO_FLUSH, MZ_PARTIAL_FLUSH/MZ_SYNC_FLUSH, MZ_FULL_FLUSH, or MZ_FINISH.
127        // Return values:
128        //   MZ_OK on success (when flushing, or if more input is needed but not available, and/or there's more output to be written but the output buffer is full).
129        //   MZ_STREAM_END if all input has been consumed and all output bytes have been written. Don't call mz_deflate() on the stream anymore.
130        //   MZ_STREAM_ERROR if the stream is bogus.
131        //   MZ_PARAM_ERROR if one of the parameters is invalid.
132        //   MZ_BUF_ERROR if no forward progress is possible because the input and/or output buffers are empty. (Fill up the input buffer or free up some output space and try again.)
133        int mz_deflate( mz_streamp pStream, int flush );
134
135        // mz_deflateEnd() deinitializes a compressor:
136        // Return values:
137        //  MZ_OK on success.
138        //  MZ_STREAM_ERROR if the stream is bogus.
139        int mz_deflateEnd( mz_streamp pStream );
140
141        // mz_deflateBound() returns a (very) conservative upper bound on the amount of data that could be generated by deflate(), assuming flush is set to only MZ_NO_FLUSH or MZ_FINISH.
142        mz_ulong mz_deflateBound( mz_streamp pStream, mz_ulong source_len );
143
144        // Single-call compression functions mz_compress() and mz_compress2():
145        // Returns MZ_OK on success, or one of the error codes from mz_deflate() on failure.
146        int mz_compress( unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len );
147        int mz_compress2( unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len, int level );
148
149        // mz_compressBound() returns a (very) conservative upper bound on the amount of data that could be generated by calling mz_compress().
150        mz_ulong mz_compressBound( mz_ulong source_len );
151
152        // Initializes a decompressor.
153        int mz_inflateInit( mz_streamp pStream );
154
155        // mz_inflateInit2() is like mz_inflateInit() with an additional option that controls the window size and whether or not the stream has been wrapped with a zlib header/footer:
156        // window_bits must be MZ_DEFAULT_WINDOW_BITS (to parse zlib header/footer) or -MZ_DEFAULT_WINDOW_BITS (raw deflate).
157        int mz_inflateInit2( mz_streamp pStream, int window_bits );
158
159        // Decompresses the input stream to the output, consuming only as much of the input as needed, and writing as much to the output as possible.
160        // Parameters:
161        //   pStream is the stream to read from and write to. You must initialize/update the next_in, avail_in, next_out, and avail_out members.
162        //   flush may be MZ_NO_FLUSH, MZ_SYNC_FLUSH, or MZ_FINISH.
163        //   On the first call, if flush is MZ_FINISH it's assumed the input and output buffers are both sized large enough to decompress the entire stream in a single call (this is slightly faster).
164        //   MZ_FINISH implies that there are no more source bytes available beside what's already in the input buffer, and that the output buffer is large enough to hold the rest of the decompressed data.
165        // Return values:
166        //   MZ_OK on success. Either more input is needed but not available, and/or there's more output to be written but the output buffer is full.
167        //   MZ_STREAM_END if all needed input has been consumed and all output bytes have been written. For zlib streams, the adler-32 of the decompressed data has also been verified.
168        //   MZ_STREAM_ERROR if the stream is bogus.
169        //   MZ_DATA_ERROR if the deflate stream is invalid.
170        //   MZ_PARAM_ERROR if one of the parameters is invalid.
171        //   MZ_BUF_ERROR if no forward progress is possible because the input buffer is empty but the inflater needs more input to continue, or if the output buffer is not large enough. Call mz_inflate() again
172        //   with more input data, or with more room in the output buffer (except when using single call decompression, described above).
173        int mz_inflate( mz_streamp pStream, int flush );
174
175        // Deinitializes a decompressor.
176        int mz_inflateEnd( mz_streamp pStream );
177
178        // Single-call decompression.
179        // Returns MZ_OK on success, or one of the error codes from mz_inflate() on failure.
180        int mz_uncompress( unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len );
181
182        // Returns a string description of the specified error code, or NULL if the error code is invalid.
183        const char *mz_error( int err );
184
185
186#endif // MINIZ_NO_ZLIB_APIS
187
188        // ------------------- Types and macros
189
190        typedef unsigned char mz_uint8;
191        typedef signed short mz_int16;
192        typedef unsigned short mz_uint16;
193        typedef unsigned int mz_uint32;
194        typedef unsigned int mz_uint;
195        typedef long long mz_int64;
196        typedef unsigned long long mz_uint64;
197        typedef int mz_bool;
198
199#define MZ_FALSE (0)
200#define MZ_TRUE (1)
201
202        // An attempt to work around MSVC's spammy "warning C4127: conditional expression is constant" message.
203#ifdef _MSC_VER
204#define MZ_MACRO_END while (0, 0)
205#else
206#define MZ_MACRO_END while (0)
207#endif
208
209        // ------------------- ZIP archive reading/writing
210
211#ifndef MINIZ_NO_ARCHIVE_APIS
212
213        enum
214        {
215                MZ_ZIP_MAX_IO_BUF_SIZE = 64 * 1024,
216                MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE = 260,
217                MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE = 256
218        };
219
220        typedef struct
221        {
222                mz_uint32 m_file_index;
223                mz_uint32 m_central_dir_ofs;
224                mz_uint16 m_version_made_by;
225                mz_uint16 m_version_needed;
226                mz_uint16 m_bit_flag;
227                mz_uint16 m_method;
228//              time_t m_time;
229
230                mz_uint32 m_crc32;
231                mz_uint64 m_comp_size;
232                mz_uint64 m_uncomp_size;
233                mz_uint16 m_internal_attr;
234                mz_uint32 m_external_attr;
235                mz_uint64 m_local_header_ofs;
236                mz_uint32 m_comment_size;
237                char m_filename[MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE];
238                char m_comment[MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE];
239        } mz_zip_archive_file_stat;
240
241        typedef size_t( *mz_file_read_func )( void *pOpaque, mz_uint64 file_ofs, void *pBuf, size_t n );
242        typedef size_t( *mz_file_write_func )( void *pOpaque, mz_uint64 file_ofs, const void *pBuf, size_t n );
243
244        struct mz_zip_internal_state_tag;
245        typedef struct mz_zip_internal_state_tag mz_zip_internal_state;
246
247        typedef enum
248        {
249                MZ_ZIP_MODE_INVALID = 0,
250                MZ_ZIP_MODE_READING = 1,
251                MZ_ZIP_MODE_WRITING = 2,
252                MZ_ZIP_MODE_WRITING_HAS_BEEN_FINALIZED = 3
253        } mz_zip_mode;
254
255        typedef struct mz_zip_archive_tag
256        {
257                mz_uint64 m_archive_size;
258                mz_uint64 m_central_directory_file_ofs;
259                mz_uint m_total_files;
260                mz_zip_mode m_zip_mode;
261
262                mz_uint m_file_offset_alignment;
263
264                mz_alloc_func m_pAlloc;
265                mz_free_func m_pFree;
266                mz_realloc_func m_pRealloc;
267                void *m_pAlloc_opaque;
268
269                mz_file_read_func m_pRead;
270                mz_file_write_func m_pWrite;
271                void *m_pIO_opaque;
272
273                mz_zip_internal_state *m_pState;
274
275        } mz_zip_archive;
276
277        typedef enum
278        {
279                MZ_ZIP_FLAG_CASE_SENSITIVE = 0x0100,
280                MZ_ZIP_FLAG_IGNORE_PATH = 0x0200,
281                MZ_ZIP_FLAG_COMPRESSED_DATA = 0x0400,
282                MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY = 0x0800
283        } mz_zip_flags;
284
285        // ZIP archive reading
286
287        // Inits a ZIP archive reader.
288        // These functions read and validate the archive's central directory.
289        mz_bool mz_zip_reader_init( mz_zip_archive *pZip, mz_uint64 size, mz_uint32 flags );
290        mz_bool mz_zip_reader_init_mem( mz_zip_archive *pZip, const void *pMem, size_t size, mz_uint32 flags );
291
292#ifndef MINIZ_NO_STDIO
293        mz_bool mz_zip_reader_init_file( mz_zip_archive *pZip, const char *pFilename, mz_uint32 flags );
294#endif
295
296        // Returns the total number of files in the archive.
297        mz_uint mz_zip_reader_get_num_files( mz_zip_archive *pZip );
298
299        // Returns detailed information about an archive file entry.
300        mz_bool mz_zip_reader_file_stat( mz_zip_archive *pZip, mz_uint file_index, mz_zip_archive_file_stat *pStat );
301
302        // Determines if an archive file entry is a directory entry.
303        mz_bool mz_zip_reader_is_file_a_directory( mz_zip_archive *pZip, mz_uint file_index );
304        mz_bool mz_zip_reader_is_file_encrypted( mz_zip_archive *pZip, mz_uint file_index );
305
306        // Retrieves the filename of an archive file entry.
307        // Returns the number of bytes written to pFilename, or if filename_buf_size is 0 this function returns the number of bytes needed to fully store the filename.
308        mz_uint mz_zip_reader_get_filename( mz_zip_archive *pZip, mz_uint file_index, char *pFilename, mz_uint filename_buf_size );
309
310        // Attempts to locates a file in the archive's central directory.
311        // Valid flags: MZ_ZIP_FLAG_CASE_SENSITIVE, MZ_ZIP_FLAG_IGNORE_PATH
312        // Returns -1 if the file cannot be found.
313        int mz_zip_reader_locate_file( mz_zip_archive *pZip, const char *pName, const char *pComment, mz_uint flags );
314
315        // Extracts a archive file to a memory buffer using no memory allocation.
316        mz_bool mz_zip_reader_extract_to_mem_no_alloc( mz_zip_archive *pZip, mz_uint file_index, void *pBuf, size_t buf_size, mz_uint flags, void *pUser_read_buf, size_t user_read_buf_size );
317        mz_bool mz_zip_reader_extract_file_to_mem_no_alloc( mz_zip_archive *pZip, const char *pFilename, void *pBuf, size_t buf_size, mz_uint flags, void *pUser_read_buf, size_t user_read_buf_size );
318
319        // Extracts a archive file to a memory buffer.
320        mz_bool mz_zip_reader_extract_to_mem( mz_zip_archive *pZip, mz_uint file_index, void *pBuf, size_t buf_size, mz_uint flags );
321        mz_bool mz_zip_reader_extract_file_to_mem( mz_zip_archive *pZip, const char *pFilename, void *pBuf, size_t buf_size, mz_uint flags );
322
323        // Extracts a archive file to a dynamically allocated heap buffer.
324        void *mz_zip_reader_extract_to_heap( mz_zip_archive *pZip, mz_uint file_index, size_t *pSize, mz_uint flags );
325        void *mz_zip_reader_extract_file_to_heap( mz_zip_archive *pZip, const char *pFilename, size_t *pSize, mz_uint flags );
326
327        // Extracts a archive file using a callback function to output the file's data.
328        mz_bool mz_zip_reader_extract_to_callback( mz_zip_archive *pZip, mz_uint file_index, mz_file_write_func pCallback, void *pOpaque, mz_uint flags );
329        mz_bool mz_zip_reader_extract_file_to_callback( mz_zip_archive *pZip, const char *pFilename, mz_file_write_func pCallback, void *pOpaque, mz_uint flags );
330
331#ifndef MINIZ_NO_STDIO
332        // Extracts a archive file to a disk file and sets its last accessed and modified times.
333        // This function only extracts files, not archive directory records.
334        mz_bool mz_zip_reader_extract_to_file( mz_zip_archive *pZip, mz_uint file_index, const char *pDst_filename, mz_uint flags );
335        mz_bool mz_zip_reader_extract_file_to_file( mz_zip_archive *pZip, const char *pArchive_filename, const char *pDst_filename, mz_uint flags );
336#endif
337
338        // Ends archive reading, freeing all allocations, and closing the input archive file if mz_zip_reader_init_file() was used.
339        mz_bool mz_zip_reader_end( mz_zip_archive *pZip );
340
341        // ZIP archive writing
342
343#ifndef MINIZ_NO_ARCHIVE_WRITING_APIS
344
345        // Inits a ZIP archive writer.
346        mz_bool mz_zip_writer_init( mz_zip_archive *pZip, mz_uint64 existing_size );
347        mz_bool mz_zip_writer_init_heap( mz_zip_archive *pZip, size_t size_to_reserve_at_beginning, size_t initial_allocation_size );
348
349#ifndef MINIZ_NO_STDIO
350        mz_bool mz_zip_writer_init_file( mz_zip_archive *pZip, const char *pFilename, mz_uint64 size_to_reserve_at_beginning );
351#endif
352
353        // Converts a ZIP archive reader object into a writer object, to allow efficient in-place file appends to occur on an existing archive.
354        // For archives opened using mz_zip_reader_init_file, pFilename must be the archive's filename so it can be reopened for writing. If the file can't be reopened, mz_zip_reader_end() will be called.
355        // For archives opened using mz_zip_reader_init_mem, the memory block must be growable using the realloc callback (which defaults to realloc unless you've overridden it).
356        // Finally, for archives opened using mz_zip_reader_init, the mz_zip_archive's user provided m_pWrite function cannot be NULL.
357        // Note: In-place archive modification is not recommended unless you know what you're doing, because if execution stops or something goes wrong before
358        // the archive is finalized the file's central directory will be hosed.
359        mz_bool mz_zip_writer_init_from_reader( mz_zip_archive *pZip, const char *pFilename );
360
361        // Adds the contents of a memory buffer to an archive. These functions record the current local time into the archive.
362        // To add a directory entry, call this method with an archive name ending in a forwardslash with empty buffer.
363        // level_and_flags - compression level (0-10, see MZ_BEST_SPEED, MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or just set to MZ_DEFAULT_COMPRESSION.
364        mz_bool mz_zip_writer_add_mem( mz_zip_archive *pZip, const char *pArchive_name, const void *pBuf, size_t buf_size, mz_uint level_and_flags );
365        mz_bool mz_zip_writer_add_mem_ex( mz_zip_archive *pZip, const char *pArchive_name, const void *pBuf, size_t buf_size, const void *pComment, mz_uint16 comment_size, mz_uint level_and_flags, mz_uint64 uncomp_size, mz_uint32 uncomp_crc32 );
366
367#ifndef MINIZ_NO_STDIO
368        // Adds the contents of a disk file to an archive. This function also records the disk file's modified time into the archive.
369        // level_and_flags - compression level (0-10, see MZ_BEST_SPEED, MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or just set to MZ_DEFAULT_COMPRESSION.
370        mz_bool mz_zip_writer_add_file( mz_zip_archive *pZip, const char *pArchive_name, const char *pSrc_filename, const void *pComment, mz_uint16 comment_size, mz_uint level_and_flags );
371#endif
372
373        // Adds a file to an archive by fully cloning the data from another archive.
374        // This function fully clones the source file's compressed data (no recompression), along with its full filename, extra data, and comment fields.
375        mz_bool mz_zip_writer_add_from_zip_reader( mz_zip_archive *pZip, mz_zip_archive *pSource_zip, mz_uint file_index );
376
377        // Finalizes the archive by writing the central directory records followed by the end of central directory record.
378        // After an archive is finalized, the only valid call on the mz_zip_archive struct is mz_zip_writer_end().
379        // An archive must be manually finalized by calling this function for it to be valid.
380        mz_bool mz_zip_writer_finalize_archive( mz_zip_archive *pZip );
381        mz_bool mz_zip_writer_finalize_heap_archive( mz_zip_archive *pZip, void **pBuf, size_t *pSize );
382
383        // Ends archive writing, freeing all allocations, and closing the output file if mz_zip_writer_init_file() was used.
384        // Note for the archive to be valid, it must have been finalized before ending.
385        mz_bool mz_zip_writer_end( mz_zip_archive *pZip );
386
387        // Misc. high-level helper functions:
388
389        // mz_zip_add_mem_to_archive_file_in_place() efficiently (but not atomically) appends a memory blob to a ZIP archive.
390        // level_and_flags - compression level (0-10, see MZ_BEST_SPEED, MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or just set to MZ_DEFAULT_COMPRESSION.
391        mz_bool mz_zip_add_mem_to_archive_file_in_place( const char *pZip_filename, const char *pArchive_name, const void *pBuf, size_t buf_size, const void *pComment, mz_uint16 comment_size, mz_uint level_and_flags );
392
393        // Reads a single file from an archive into a heap block.
394        // Returns NULL on failure.
395        void *mz_zip_extract_archive_file_to_heap( const char *pZip_filename, const char *pArchive_name, size_t *pSize, mz_uint zip_flags );
396
397#endif // #ifndef MINIZ_NO_ARCHIVE_WRITING_APIS
398
399#endif // #ifndef MINIZ_NO_ARCHIVE_APIS
400
401        // ------------------- Low-level Decompression API Definitions
402
403        // Decompression flags used by tinfl_decompress().
404        // TINFL_FLAG_PARSE_ZLIB_HEADER: If set, the input has a valid zlib header and ends with an adler32 checksum (it's a valid zlib stream). Otherwise, the input is a raw deflate stream.
405        // TINFL_FLAG_HAS_MORE_INPUT: If set, there are more input bytes available beyond the end of the supplied input buffer. If clear, the input buffer contains all remaining input.
406        // TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF: If set, the output buffer is large enough to hold the entire decompressed stream. If clear, the output buffer is at least the size of the dictionary (typically 32KB).
407        // TINFL_FLAG_COMPUTE_ADLER32: Force adler-32 checksum computation of the decompressed bytes.
408        enum
409        {
410                TINFL_FLAG_PARSE_ZLIB_HEADER = 1,
411                TINFL_FLAG_HAS_MORE_INPUT = 2,
412                TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF = 4,
413                TINFL_FLAG_COMPUTE_ADLER32 = 8
414        };
415
416        // High level decompression functions:
417        // tinfl_decompress_mem_to_heap() decompresses a block in memory to a heap block allocated via malloc().
418        // On entry:
419        //  pSrc_buf, src_buf_len: Pointer and size of the Deflate or zlib source data to decompress.
420        // On return:
421        //  Function returns a pointer to the decompressed data, or NULL on failure.
422        //  *pOut_len will be set to the decompressed data's size, which could be larger than src_buf_len on uncompressible data.
423        //  The caller must call mz_free() on the returned block when it's no longer needed.
424        void *tinfl_decompress_mem_to_heap( const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags );
425
426        // tinfl_decompress_mem_to_mem() decompresses a block in memory to another block in memory.
427        // Returns TINFL_DECOMPRESS_MEM_TO_MEM_FAILED on failure, or the number of bytes written on success.
428#define TINFL_DECOMPRESS_MEM_TO_MEM_FAILED ((size_t)(-1))
429        size_t tinfl_decompress_mem_to_mem( void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags );
430
431        // tinfl_decompress_mem_to_callback() decompresses a block in memory to an internal 32KB buffer, and a user provided callback function will be called to flush the buffer.
432        // Returns 1 on success or 0 on failure.
433        typedef int( *tinfl_put_buf_func_ptr )( const void* pBuf, int len, void *pUser );
434        int tinfl_decompress_mem_to_callback( const void *pIn_buf, size_t *pIn_buf_size, tinfl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags );
435
436        struct tinfl_decompressor_tag; typedef struct tinfl_decompressor_tag tinfl_decompressor;
437
438        // Max size of LZ dictionary.
439#define TINFL_LZ_DICT_SIZE 32768
440
441        // Return status.
442        typedef enum
443        {
444                TINFL_STATUS_BAD_PARAM = -3,
445                TINFL_STATUS_ADLER32_MISMATCH = -2,
446                TINFL_STATUS_FAILED = -1,
447                TINFL_STATUS_DONE = 0,
448                TINFL_STATUS_NEEDS_MORE_INPUT = 1,
449                TINFL_STATUS_HAS_MORE_OUTPUT = 2
450        } tinfl_status;
451
452        // Initializes the decompressor to its initial state.
453#define tinfl_init(r) do { (r)->m_state = 0; } MZ_MACRO_END
454#define tinfl_get_adler32(r) (r)->m_check_adler32
455
456        // Main low-level decompressor coroutine function. This is the only function actually needed for decompression. All the other functions are just high-level helpers for improved usability.
457        // This is a universal API, i.e. it can be used as a building block to build any desired higher level decompression API. In the limit case, it can be called once per every byte input or output.
458        tinfl_status tinfl_decompress( tinfl_decompressor *r, const mz_uint8 *pIn_buf_next, size_t *pIn_buf_size, mz_uint8 *pOut_buf_start, mz_uint8 *pOut_buf_next, size_t *pOut_buf_size, const mz_uint32 decomp_flags );
459
460        // Internal/private bits follow.
461        enum
462        {
463                TINFL_MAX_HUFF_TABLES = 3, TINFL_MAX_HUFF_SYMBOLS_0 = 288, TINFL_MAX_HUFF_SYMBOLS_1 = 32, TINFL_MAX_HUFF_SYMBOLS_2 = 19,
464                TINFL_FAST_LOOKUP_BITS = 10, TINFL_FAST_LOOKUP_SIZE = 1 << TINFL_FAST_LOOKUP_BITS
465        };
466
467        typedef struct
468        {
469                mz_uint8 m_code_size[TINFL_MAX_HUFF_SYMBOLS_0];
470                mz_int16 m_look_up[TINFL_FAST_LOOKUP_SIZE], m_tree[TINFL_MAX_HUFF_SYMBOLS_0 * 2];
471        } tinfl_huff_table;
472
473#if NV_ARCHITECTURE == NV_64BIT
474        typedef mz_uint64 tinfl_bit_buf_t;
475#define TINFL_BITBUF_SIZE (64)
476#else
477        typedef mz_uint32 tinfl_bit_buf_t;
478#define TINFL_BITBUF_SIZE (32)
479#endif
480
481        struct tinfl_decompressor_tag
482        {
483                mz_uint32 m_state, m_num_bits, m_zhdr0, m_zhdr1, m_z_adler32, m_final, m_type, m_check_adler32, m_dist, m_counter, m_num_extra, m_table_sizes[TINFL_MAX_HUFF_TABLES];
484                tinfl_bit_buf_t m_bit_buf;
485                size_t m_dist_from_out_buf_start;
486                tinfl_huff_table m_tables[TINFL_MAX_HUFF_TABLES];
487                mz_uint8 m_raw_header[4], m_len_codes[TINFL_MAX_HUFF_SYMBOLS_0 + TINFL_MAX_HUFF_SYMBOLS_1 + 137];
488        };
489
490        // ------------------- Low-level Compression API Definitions
491
492        // Set TDEFL_LESS_MEMORY to 1 to use less memory (compression will be slightly slower, and raw/dynamic blocks will be output more frequently).
493#define TDEFL_LESS_MEMORY 0
494
495        // tdefl_init() compression flags logically OR'd together (low 12 bits contain the max. number of probes per dictionary search):
496        // TDEFL_DEFAULT_MAX_PROBES: The compressor defaults to 128 dictionary probes per dictionary search. 0=Huffman only, 1=Huffman+LZ (fastest/crap compression), 4095=Huffman+LZ (slowest/best compression).
497        enum
498        {
499                TDEFL_HUFFMAN_ONLY = 0, TDEFL_DEFAULT_MAX_PROBES = 128, TDEFL_MAX_PROBES_MASK = 0xFFF
500        };
501
502        // TDEFL_WRITE_ZLIB_HEADER: If set, the compressor outputs a zlib header before the deflate data, and the Adler-32 of the source data at the end. Otherwise, you'll get raw deflate data.
503        // TDEFL_COMPUTE_ADLER32: Always compute the adler-32 of the input data (even when not writing zlib headers).
504        // TDEFL_GREEDY_PARSING_FLAG: Set to use faster greedy parsing, instead of more efficient lazy parsing.
505        // TDEFL_NONDETERMINISTIC_PARSING_FLAG: Enable to decrease the compressor's initialization time to the minimum, but the output may vary from run to run given the same input (depending on the contents of memory).
506        // TDEFL_RLE_MATCHES: Only look for RLE matches (matches with a distance of 1)
507        // TDEFL_FILTER_MATCHES: Discards matches <= 5 chars if enabled.
508        // TDEFL_FORCE_ALL_STATIC_BLOCKS: Disable usage of optimized Huffman tables.
509        // TDEFL_FORCE_ALL_RAW_BLOCKS: Only use raw (uncompressed) deflate blocks.
510        // The low 12 bits are reserved to control the max # of hash probes per dictionary lookup (see TDEFL_MAX_PROBES_MASK).
511        enum
512        {
513                TDEFL_WRITE_ZLIB_HEADER = 0x01000,
514                TDEFL_COMPUTE_ADLER32 = 0x02000,
515                TDEFL_GREEDY_PARSING_FLAG = 0x04000,
516                TDEFL_NONDETERMINISTIC_PARSING_FLAG = 0x08000,
517                TDEFL_RLE_MATCHES = 0x10000,
518                TDEFL_FILTER_MATCHES = 0x20000,
519                TDEFL_FORCE_ALL_STATIC_BLOCKS = 0x40000,
520                TDEFL_FORCE_ALL_RAW_BLOCKS = 0x80000
521        };
522
523        // High level compression functions:
524        // tdefl_compress_mem_to_heap() compresses a block in memory to a heap block allocated via malloc().
525        // On entry:
526        //  pSrc_buf, src_buf_len: Pointer and size of source block to compress.
527        //  flags: The max match finder probes (default is 128) logically OR'd against the above flags. Higher probes are slower but improve compression.
528        // On return:
529        //  Function returns a pointer to the compressed data, or NULL on failure.
530        //  *pOut_len will be set to the compressed data's size, which could be larger than src_buf_len on uncompressible data.
531        //  The caller must free() the returned block when it's no longer needed.
532        void *tdefl_compress_mem_to_heap( const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags );
533
534        // tdefl_compress_mem_to_mem() compresses a block in memory to another block in memory.
535        // Returns 0 on failure.
536        size_t tdefl_compress_mem_to_mem( void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags );
537
538        // Compresses an image to a compressed PNG file in memory.
539        // On entry:
540        //  pImage, w, h, and num_chans describe the image to compress. num_chans may be 1, 2, 3, or 4.
541        //  The image pitch in bytes per scanline will be w*num_chans. The leftmost pixel on the top scanline is stored first in memory.
542        //  level may range from [0,10], use MZ_NO_COMPRESSION, MZ_BEST_SPEED, MZ_BEST_COMPRESSION, etc. or a decent default is MZ_DEFAULT_LEVEL
543        //  If flip is true, the image will be flipped on the Y axis (useful for OpenGL apps).
544        // On return:
545        //  Function returns a pointer to the compressed data, or NULL on failure.
546        //  *pLen_out will be set to the size of the PNG image file.
547        //  The caller must mz_free() the returned heap block (which will typically be larger than *pLen_out) when it's no longer needed.
548        void *tdefl_write_image_to_png_file_in_memory_ex( const void *pImage, int w, int h, int num_chans, size_t *pLen_out, mz_uint level, mz_bool flip );
549        void *tdefl_write_image_to_png_file_in_memory( const void *pImage, int w, int h, int num_chans, size_t *pLen_out );
550
551        // Output stream interface. The compressor uses this interface to write compressed data. It'll typically be called TDEFL_OUT_BUF_SIZE at a time.
552        typedef mz_bool( *tdefl_put_buf_func_ptr )( const void* pBuf, int len, void *pUser );
553
554        // tdefl_compress_mem_to_output() compresses a block to an output stream. The above helpers use this function internally.
555        mz_bool tdefl_compress_mem_to_output( const void *pBuf, size_t buf_len, tdefl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags );
556
557        enum { TDEFL_MAX_HUFF_TABLES = 3, TDEFL_MAX_HUFF_SYMBOLS_0 = 288, TDEFL_MAX_HUFF_SYMBOLS_1 = 32, TDEFL_MAX_HUFF_SYMBOLS_2 = 19, TDEFL_LZ_DICT_SIZE = 32768, TDEFL_LZ_DICT_SIZE_MASK = TDEFL_LZ_DICT_SIZE - 1, TDEFL_MIN_MATCH_LEN = 3, TDEFL_MAX_MATCH_LEN = 258 };
558
559        // TDEFL_OUT_BUF_SIZE MUST be large enough to hold a single entire compressed output block (using static/fixed Huffman codes).
560#if TDEFL_LESS_MEMORY
561        enum { TDEFL_LZ_CODE_BUF_SIZE = 24 * 1024, TDEFL_OUT_BUF_SIZE = ( TDEFL_LZ_CODE_BUF_SIZE * 13 ) / 10, TDEFL_MAX_HUFF_SYMBOLS = 288, TDEFL_LZ_HASH_BITS = 12, TDEFL_LEVEL1_HASH_SIZE_MASK = 4095, TDEFL_LZ_HASH_SHIFT = ( TDEFL_LZ_HASH_BITS + 2 ) / 3, TDEFL_LZ_HASH_SIZE = 1 << TDEFL_LZ_HASH_BITS };
562#else
563        enum { TDEFL_LZ_CODE_BUF_SIZE = 64 * 1024, TDEFL_OUT_BUF_SIZE = ( TDEFL_LZ_CODE_BUF_SIZE * 13 ) / 10, TDEFL_MAX_HUFF_SYMBOLS = 288, TDEFL_LZ_HASH_BITS = 15, TDEFL_LEVEL1_HASH_SIZE_MASK = 4095, TDEFL_LZ_HASH_SHIFT = ( TDEFL_LZ_HASH_BITS + 2 ) / 3, TDEFL_LZ_HASH_SIZE = 1 << TDEFL_LZ_HASH_BITS };
564#endif
565
566        // The low-level tdefl functions below may be used directly if the above helper functions aren't flexible enough. The low-level functions don't make any heap allocations, unlike the above helper functions.
567        typedef enum
568        {
569                TDEFL_STATUS_BAD_PARAM = -2,
570                TDEFL_STATUS_PUT_BUF_FAILED = -1,
571                TDEFL_STATUS_OKAY = 0,
572                TDEFL_STATUS_DONE = 1,
573        } tdefl_status;
574
575        // Must map to MZ_NO_FLUSH, MZ_SYNC_FLUSH, etc. enums
576        typedef enum
577        {
578                TDEFL_NO_FLUSH = 0,
579                TDEFL_SYNC_FLUSH = 2,
580                TDEFL_FULL_FLUSH = 3,
581                TDEFL_FINISH = 4
582        } tdefl_flush;
583
584        // tdefl's compression state structure.
585        typedef struct
586        {
587                tdefl_put_buf_func_ptr m_pPut_buf_func;
588                void *m_pPut_buf_user;
589                mz_uint m_flags, m_max_probes[2];
590                int m_greedy_parsing;
591                mz_uint m_adler32, m_lookahead_pos, m_lookahead_size, m_dict_size;
592                mz_uint8 *m_pLZ_code_buf, *m_pLZ_flags, *m_pOutput_buf, *m_pOutput_buf_end;
593                mz_uint m_num_flags_left, m_total_lz_bytes, m_lz_code_buf_dict_pos, m_bits_in, m_bit_buffer;
594                mz_uint m_saved_match_dist, m_saved_match_len, m_saved_lit, m_output_flush_ofs, m_output_flush_remaining, m_finished, m_block_index, m_wants_to_finish;
595                tdefl_status m_prev_return_status;
596                const void *m_pIn_buf;
597                void *m_pOut_buf;
598                size_t *m_pIn_buf_size, *m_pOut_buf_size;
599                tdefl_flush m_flush;
600                const mz_uint8 *m_pSrc;
601                size_t m_src_buf_left, m_out_buf_ofs;
602                mz_uint8 m_dict[TDEFL_LZ_DICT_SIZE + TDEFL_MAX_MATCH_LEN - 1];
603                mz_uint16 m_huff_count[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS];
604                mz_uint16 m_huff_codes[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS];
605                mz_uint8 m_huff_code_sizes[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS];
606                mz_uint8 m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE];
607                mz_uint16 m_next[TDEFL_LZ_DICT_SIZE];
608                mz_uint16 m_hash[TDEFL_LZ_HASH_SIZE];
609                mz_uint8 m_output_buf[TDEFL_OUT_BUF_SIZE];
610        } tdefl_compressor;
611
612        // Initializes the compressor.
613        // There is no corresponding deinit() function because the tdefl API's do not dynamically allocate memory.
614        // pBut_buf_func: If NULL, output data will be supplied to the specified callback. In this case, the user should call the tdefl_compress_buffer() API for compression.
615        // If pBut_buf_func is NULL the user should always call the tdefl_compress() API.
616        // flags: See the above enums (TDEFL_HUFFMAN_ONLY, TDEFL_WRITE_ZLIB_HEADER, etc.)
617        tdefl_status tdefl_init( tdefl_compressor *d, tdefl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags );
618
619        // Compresses a block of data, consuming as much of the specified input buffer as possible, and writing as much compressed data to the specified output buffer as possible.
620        tdefl_status tdefl_compress( tdefl_compressor *d, const void *pIn_buf, size_t *pIn_buf_size, void *pOut_buf, size_t *pOut_buf_size, tdefl_flush flush );
621
622        // tdefl_compress_buffer() is only usable when the tdefl_init() is called with a non-NULL tdefl_put_buf_func_ptr.
623        // tdefl_compress_buffer() always consumes the entire input buffer.
624        tdefl_status tdefl_compress_buffer( tdefl_compressor *d, const void *pIn_buf, size_t in_buf_size, tdefl_flush flush );
625
626        tdefl_status tdefl_get_prev_return_status( tdefl_compressor *d );
627        mz_uint32 tdefl_get_adler32( tdefl_compressor *d );
628
629        // Can't use tdefl_create_comp_flags_from_zip_params if MINIZ_NO_ZLIB_APIS isn't defined, because it uses some of its macros.
630#ifndef MINIZ_NO_ZLIB_APIS
631        // Create tdefl_compress() flags given zlib-style compression parameters.
632        // level may range from [0,10] (where 10 is absolute max compression, but may be much slower on some files)
633        // window_bits may be -15 (raw deflate) or 15 (zlib)
634        // strategy may be either MZ_DEFAULT_STRATEGY, MZ_FILTERED, MZ_HUFFMAN_ONLY, MZ_RLE, or MZ_FIXED
635        mz_uint tdefl_create_comp_flags_from_zip_params( int level, int window_bits, int strategy );
636#endif // #ifndef MINIZ_NO_ZLIB_APIS
637
638#ifdef __cplusplus
639}
640#endif
641
642
643// ------------------- End of Header: Implementation follows. (If you only want the header, define MINIZ_HEADER_FILE_ONLY.)
644
645typedef unsigned char mz_validate_uint16[sizeof( mz_uint16 ) == 2 ? 1 : -1];
646typedef unsigned char mz_validate_uint32[sizeof( mz_uint32 ) == 4 ? 1 : -1];
647typedef unsigned char mz_validate_uint64[sizeof( mz_uint64 ) == 8 ? 1 : -1];
648
649#include <string.h>
650#include <assert.h>
651
652#define MZ_ASSERT(x) assert(x)
653
654#ifdef MINIZ_NO_MALLOC
655#define MZ_MALLOC(x) NULL
656#define MZ_FREE(x) (void)x, ((void)0)
657#define MZ_REALLOC(p, x) NULL
658#else
659#define MZ_MALLOC(x) nvmalloc(x)
660#define MZ_FREE(x) nvfree(x)
661#define MZ_REALLOC(p, x) nvrealloc(p, x)
662#endif
663
664#define MZ_MAX(a,b) (((a)>(b))?(a):(b))
665#define MZ_MIN(a,b) (((a)<(b))?(a):(b))
666#define MZ_CLEAR_OBJ(obj) nvmemset(&(obj), 0, sizeof(obj))
667
668#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && NV_ENDIANESS == NV_LITTLEENDIAN
669#define MZ_READ_LE16(p) *((const mz_uint16 *)(p))
670#define MZ_READ_LE32(p) *((const mz_uint32 *)(p))
671#else
672#define MZ_READ_LE16(p) ((mz_uint32)(((const mz_uint8 *)(p))[0]) | ((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U))
673#define MZ_READ_LE32(p) ((mz_uint32)(((const mz_uint8 *)(p))[0]) | ((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U) | ((mz_uint32)(((const mz_uint8 *)(p))[2]) << 16U) | ((mz_uint32)(((const mz_uint8 *)(p))[3]) << 24U))
674#endif
675
676#ifdef _MSC_VER
677#define MZ_FORCEINLINE __forceinline
678#elif defined(__GNUC__)
679#define MZ_FORCEINLINE inline __attribute__((__always_inline__))
680#else
681#define MZ_FORCEINLINE inline
682#endif
683
684#ifdef __cplusplus
685extern "C" {
686#endif
687
688        // ------------------- zlib-style API's
689
690        mz_ulong mz_adler32( mz_ulong adler, const unsigned char *ptr, size_t buf_len )
691        {
692                mz_uint32 i, s1 = (mz_uint32)( adler & 0xffff ), s2 = (mz_uint32)( adler >> 16 ); size_t block_len = buf_len % 5552;
693                if ( !ptr ) return MZ_ADLER32_INIT;
694                while ( buf_len )
695                {
696                        for ( i = 0; i + 7 < block_len; i += 8, ptr += 8 )
697                        {
698                                s1 += ptr[0], s2 += s1; s1 += ptr[1], s2 += s1; s1 += ptr[2], s2 += s1; s1 += ptr[3], s2 += s1;
699                                s1 += ptr[4], s2 += s1; s1 += ptr[5], s2 += s1; s1 += ptr[6], s2 += s1; s1 += ptr[7], s2 += s1;
700                        }
701                        for ( ; i < block_len; ++i ) s1 += *ptr++, s2 += s1;
702                        s1 %= 65521U, s2 %= 65521U; buf_len -= block_len; block_len = 5552;
703                }
704                return ( s2 << 16 ) + s1;
705        }
706
707        // Karl Malbrain's compact CRC-32. See "A compact CCITT crc16 and crc32 C implementation that balances processor cache usage against speed": http://www.geocities.com/malbrain/
708        mz_ulong mz_crc32( mz_ulong crc, const mz_uint8 *ptr, size_t buf_len )
709        {
710                static const mz_uint32 s_crc32[16] = { 0, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
711                        0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c };
712                mz_uint32 crcu32 = (mz_uint32)crc;
713                if ( !ptr ) return MZ_CRC32_INIT;
714                crcu32 = ~crcu32; while ( buf_len-- ) { mz_uint8 b = *ptr++; crcu32 = ( crcu32 >> 4 ) ^ s_crc32[( crcu32 & 0xF ) ^ ( b & 0xF )]; crcu32 = ( crcu32 >> 4 ) ^ s_crc32[( crcu32 & 0xF ) ^ ( b >> 4 )]; }
715                return ~crcu32;
716        }
717
718        void mz_free( void *p )
719        {
720                MZ_FREE( p );
721        }
722
723#ifndef MINIZ_NO_ZLIB_APIS
724
725        static void *def_alloc_func( void *opaque, size_t items, size_t size ) { (void)opaque, (void)items, (void)size; return MZ_MALLOC( items * size ); }
726        static void def_free_func( void *opaque, void *address ) { (void)opaque, (void)address; MZ_FREE( address ); }
727//      static void *def_realloc_func( void *opaque, void *address, size_t items, size_t size ) { (void)opaque, (void)address, (void)items, (void)size; return MZ_REALLOC( address, items * size ); }
728
729        const char *mz_version( void )
730        {
731                return MZ_VERSION;
732        }
733
734        int mz_deflateInit( mz_streamp pStream, int level )
735        {
736                return mz_deflateInit2( pStream, level, MZ_DEFLATED, MZ_DEFAULT_WINDOW_BITS, 9, MZ_DEFAULT_STRATEGY );
737        }
738
739        int mz_deflateInit2( mz_streamp pStream, int level, int method, int window_bits, int mem_level, int strategy )
740        {
741                tdefl_compressor *pComp;
742                mz_uint comp_flags = TDEFL_COMPUTE_ADLER32 | tdefl_create_comp_flags_from_zip_params( level, window_bits, strategy );
743
744                if ( !pStream ) return MZ_STREAM_ERROR;
745                if ( ( method != MZ_DEFLATED ) || ( ( mem_level < 1 ) || ( mem_level > 9 ) ) || ( ( window_bits != MZ_DEFAULT_WINDOW_BITS ) && ( -window_bits != MZ_DEFAULT_WINDOW_BITS ) ) ) return MZ_PARAM_ERROR;
746
747                pStream->data_type = 0;
748                pStream->adler = MZ_ADLER32_INIT;
749                pStream->msg = NULL;
750                pStream->reserved = 0;
751                pStream->total_in = 0;
752                pStream->total_out = 0;
753                if ( !pStream->zalloc ) pStream->zalloc = def_alloc_func;
754                if ( !pStream->zfree ) pStream->zfree = def_free_func;
755
756                pComp = (tdefl_compressor *)pStream->zalloc( pStream->opaque, 1, sizeof( tdefl_compressor ) );
757                if ( !pComp )
758                        return MZ_MEM_ERROR;
759
760                pStream->state = ( struct mz_internal_state * )pComp;
761
762                if ( tdefl_init( pComp, NULL, NULL, comp_flags ) != TDEFL_STATUS_OKAY )
763                {
764                        mz_deflateEnd( pStream );
765                        return MZ_PARAM_ERROR;
766                }
767
768                return MZ_OK;
769        }
770
771        int mz_deflateReset( mz_streamp pStream )
772        {
773                if ( ( !pStream ) || ( !pStream->state ) || ( !pStream->zalloc ) || ( !pStream->zfree ) ) return MZ_STREAM_ERROR;
774                pStream->total_in = pStream->total_out = 0;
775                tdefl_init( (tdefl_compressor*)pStream->state, NULL, NULL, ( (tdefl_compressor*)pStream->state )->m_flags );
776                return MZ_OK;
777        }
778
779        int mz_deflate( mz_streamp pStream, int flush )
780        {
781                size_t in_bytes, out_bytes;
782                mz_ulong orig_total_in, orig_total_out;
783                int mz_status = MZ_OK;
784
785                if ( ( !pStream ) || ( !pStream->state ) || ( flush < 0 ) || ( flush > MZ_FINISH ) || ( !pStream->next_out ) ) return MZ_STREAM_ERROR;
786                if ( !pStream->avail_out ) return MZ_BUF_ERROR;
787
788                if ( flush == MZ_PARTIAL_FLUSH ) flush = MZ_SYNC_FLUSH;
789
790                if ( ( (tdefl_compressor*)pStream->state )->m_prev_return_status == TDEFL_STATUS_DONE )
791                        return ( flush == MZ_FINISH ) ? MZ_STREAM_END : MZ_BUF_ERROR;
792
793                orig_total_in = pStream->total_in; orig_total_out = pStream->total_out;
794                for ( ; ; )
795                {
796                        tdefl_status defl_status;
797                        in_bytes = pStream->avail_in; out_bytes = pStream->avail_out;
798
799                        defl_status = tdefl_compress( (tdefl_compressor*)pStream->state, pStream->next_in, &in_bytes, pStream->next_out, &out_bytes, (tdefl_flush)flush );
800                        pStream->next_in += (mz_uint)in_bytes; pStream->avail_in -= (mz_uint)in_bytes;
801                        pStream->total_in += (mz_uint)in_bytes; pStream->adler = tdefl_get_adler32( (tdefl_compressor*)pStream->state );
802
803                        pStream->next_out += (mz_uint)out_bytes; pStream->avail_out -= (mz_uint)out_bytes;
804                        pStream->total_out += (mz_uint)out_bytes;
805
806                        if ( defl_status < 0 )
807                        {
808                                mz_status = MZ_STREAM_ERROR;
809                                break;
810                        }
811                        else if ( defl_status == TDEFL_STATUS_DONE )
812                        {
813                                mz_status = MZ_STREAM_END;
814                                break;
815                        }
816                        else if ( !pStream->avail_out )
817                                break;
818                        else if ( ( !pStream->avail_in ) && ( flush != MZ_FINISH ) )
819                        {
820                                if ( ( flush ) || ( pStream->total_in != orig_total_in ) || ( pStream->total_out != orig_total_out ) )
821                                        break;
822                                return MZ_BUF_ERROR; // Can't make forward progress without some input.
823                        }
824                }
825                return mz_status;
826        }
827
828        int mz_deflateEnd( mz_streamp pStream )
829        {
830                if ( !pStream ) return MZ_STREAM_ERROR;
831                if ( pStream->state )
832                {
833                        pStream->zfree( pStream->opaque, pStream->state );
834                        pStream->state = NULL;
835                }
836                return MZ_OK;
837        }
838
839        mz_ulong mz_deflateBound( mz_streamp pStream, mz_ulong source_len )
840        {
841                (void)pStream;
842                // This is really over conservative. (And lame, but it's actually pretty tricky to compute a true upper bound given the way tdefl's blocking works.)
843                return MZ_MAX( 128 + ( source_len * 110 ) / 100, 128 + source_len + ( ( source_len / ( 31 * 1024 ) ) + 1 ) * 5 );
844        }
845
846        int mz_compress2( unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len, int level )
847        {
848                int status;
849                mz_stream stream;
850                memset( &stream, 0, sizeof( stream ) );
851
852                // In case mz_ulong is 64-bits (argh I hate longs).
853                if ( ( source_len | *pDest_len ) > 0xFFFFFFFFU ) return MZ_PARAM_ERROR;
854
855                stream.next_in = pSource;
856                stream.avail_in = (mz_uint32)source_len;
857                stream.next_out = pDest;
858                stream.avail_out = (mz_uint32)*pDest_len;
859
860                status = mz_deflateInit( &stream, level );
861                if ( status != MZ_OK ) return status;
862
863                status = mz_deflate( &stream, MZ_FINISH );
864                if ( status != MZ_STREAM_END )
865                {
866                        mz_deflateEnd( &stream );
867                        return ( status == MZ_OK ) ? MZ_BUF_ERROR : status;
868                }
869
870                *pDest_len = stream.total_out;
871                return mz_deflateEnd( &stream );
872        }
873
874        int mz_compress( unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len )
875        {
876                return mz_compress2( pDest, pDest_len, pSource, source_len, MZ_DEFAULT_COMPRESSION );
877        }
878
879        mz_ulong mz_compressBound( mz_ulong source_len )
880        {
881                return mz_deflateBound( NULL, source_len );
882        }
883
884        typedef struct
885        {
886                tinfl_decompressor m_decomp;
887                mz_uint m_dict_ofs, m_dict_avail, m_first_call, m_has_flushed; int m_window_bits;
888                mz_uint8 m_dict[TINFL_LZ_DICT_SIZE];
889                tinfl_status m_last_status;
890        } inflate_state;
891
892        int mz_inflateInit2( mz_streamp pStream, int window_bits )
893        {
894                inflate_state *pDecomp;
895                if ( !pStream ) return MZ_STREAM_ERROR;
896                if ( ( window_bits != MZ_DEFAULT_WINDOW_BITS ) && ( -window_bits != MZ_DEFAULT_WINDOW_BITS ) ) return MZ_PARAM_ERROR;
897
898                pStream->data_type = 0;
899                pStream->adler = 0;
900                pStream->msg = NULL;
901                pStream->total_in = 0;
902                pStream->total_out = 0;
903                pStream->reserved = 0;
904                if ( !pStream->zalloc ) pStream->zalloc = def_alloc_func;
905                if ( !pStream->zfree ) pStream->zfree = def_free_func;
906
907                pDecomp = (inflate_state*)pStream->zalloc( pStream->opaque, 1, sizeof( inflate_state ) );
908                if ( !pDecomp ) return MZ_MEM_ERROR;
909
910                pStream->state = ( struct mz_internal_state * )pDecomp;
911
912                tinfl_init( &pDecomp->m_decomp );
913                pDecomp->m_dict_ofs = 0;
914                pDecomp->m_dict_avail = 0;
915                pDecomp->m_last_status = TINFL_STATUS_NEEDS_MORE_INPUT;
916                pDecomp->m_first_call = 1;
917                pDecomp->m_has_flushed = 0;
918                pDecomp->m_window_bits = window_bits;
919
920                return MZ_OK;
921        }
922
923        int mz_inflateInit( mz_streamp pStream )
924        {
925                return mz_inflateInit2( pStream, MZ_DEFAULT_WINDOW_BITS );
926        }
927
928        int mz_inflate( mz_streamp pStream, int flush )
929        {
930                inflate_state* pState;
931                mz_uint n, first_call, decomp_flags = TINFL_FLAG_COMPUTE_ADLER32;
932                size_t in_bytes, out_bytes, orig_avail_in;
933                tinfl_status status;
934
935                if ( ( !pStream ) || ( !pStream->state ) ) return MZ_STREAM_ERROR;
936                if ( flush == MZ_PARTIAL_FLUSH ) flush = MZ_SYNC_FLUSH;
937                if ( ( flush ) && ( flush != MZ_SYNC_FLUSH ) && ( flush != MZ_FINISH ) ) return MZ_STREAM_ERROR;
938
939                pState = (inflate_state*)pStream->state;
940                if ( pState->m_window_bits > 0 ) decomp_flags |= TINFL_FLAG_PARSE_ZLIB_HEADER;
941                orig_avail_in = pStream->avail_in;
942
943                first_call = pState->m_first_call; pState->m_first_call = 0;
944                if ( pState->m_last_status < 0 ) return MZ_DATA_ERROR;
945
946                if ( pState->m_has_flushed && ( flush != MZ_FINISH ) ) return MZ_STREAM_ERROR;
947                pState->m_has_flushed |= ( flush == MZ_FINISH );
948
949                if ( ( flush == MZ_FINISH ) && ( first_call ) )
950                {
951                        // MZ_FINISH on the first call implies that the input and output buffers are large enough to hold the entire compressed/decompressed file.
952                        decomp_flags |= TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF;
953                        in_bytes = pStream->avail_in; out_bytes = pStream->avail_out;
954                        status = tinfl_decompress( &pState->m_decomp, pStream->next_in, &in_bytes, pStream->next_out, pStream->next_out, &out_bytes, decomp_flags );
955                        pState->m_last_status = status;
956                        pStream->next_in += (mz_uint)in_bytes; pStream->avail_in -= (mz_uint)in_bytes; pStream->total_in += (mz_uint)in_bytes;
957                        pStream->adler = tinfl_get_adler32( &pState->m_decomp );
958                        pStream->next_out += (mz_uint)out_bytes; pStream->avail_out -= (mz_uint)out_bytes; pStream->total_out += (mz_uint)out_bytes;
959
960                        if ( status < 0 )
961                                return MZ_DATA_ERROR;
962                        else if ( status != TINFL_STATUS_DONE )
963                        {
964                                pState->m_last_status = TINFL_STATUS_FAILED;
965                                return MZ_BUF_ERROR;
966                        }
967                        return MZ_STREAM_END;
968                }
969                // flush != MZ_FINISH then we must assume there's more input.
970                if ( flush != MZ_FINISH ) decomp_flags |= TINFL_FLAG_HAS_MORE_INPUT;
971
972                if ( pState->m_dict_avail )
973                {
974                        n = MZ_MIN( pState->m_dict_avail, pStream->avail_out );
975                        memcpy( pStream->next_out, pState->m_dict + pState->m_dict_ofs, n );
976                        pStream->next_out += n; pStream->avail_out -= n; pStream->total_out += n;
977                        pState->m_dict_avail -= n; pState->m_dict_ofs = ( pState->m_dict_ofs + n ) & ( TINFL_LZ_DICT_SIZE - 1 );
978                        return ( ( pState->m_last_status == TINFL_STATUS_DONE ) && ( !pState->m_dict_avail ) ) ? MZ_STREAM_END : MZ_OK;
979                }
980
981                for ( ; ; )
982                {
983                        in_bytes = pStream->avail_in;
984                        out_bytes = TINFL_LZ_DICT_SIZE - pState->m_dict_ofs;
985
986                        status = tinfl_decompress( &pState->m_decomp, pStream->next_in, &in_bytes, pState->m_dict, pState->m_dict + pState->m_dict_ofs, &out_bytes, decomp_flags );
987                        pState->m_last_status = status;
988
989                        pStream->next_in += (mz_uint)in_bytes; pStream->avail_in -= (mz_uint)in_bytes;
990                        pStream->total_in += (mz_uint)in_bytes; pStream->adler = tinfl_get_adler32( &pState->m_decomp );
991
992                        pState->m_dict_avail = (mz_uint)out_bytes;
993
994                        n = MZ_MIN( pState->m_dict_avail, pStream->avail_out );
995                        memcpy( pStream->next_out, pState->m_dict + pState->m_dict_ofs, n );
996                        pStream->next_out += n; pStream->avail_out -= n; pStream->total_out += n;
997                        pState->m_dict_avail -= n; pState->m_dict_ofs = ( pState->m_dict_ofs + n ) & ( TINFL_LZ_DICT_SIZE - 1 );
998
999                        if ( status < 0 )
1000                                return MZ_DATA_ERROR; // Stream is corrupted (there could be some uncompressed data left in the output dictionary - oh well).
1001                        else if ( ( status == TINFL_STATUS_NEEDS_MORE_INPUT ) && ( !orig_avail_in ) )
1002                                return MZ_BUF_ERROR; // Signal caller that we can't make forward progress without supplying more input or by setting flush to MZ_FINISH.
1003                        else if ( flush == MZ_FINISH )
1004                        {
1005                                // The output buffer MUST be large to hold the remaining uncompressed data when flush==MZ_FINISH.
1006                                if ( status == TINFL_STATUS_DONE )
1007                                        return pState->m_dict_avail ? MZ_BUF_ERROR : MZ_STREAM_END;
1008                                // status here must be TINFL_STATUS_HAS_MORE_OUTPUT, which means there's at least 1 more byte on the way. If there's no more room left in the output buffer then something is wrong.
1009                                else if ( !pStream->avail_out )
1010                                        return MZ_BUF_ERROR;
1011                        }
1012                        else if ( ( status == TINFL_STATUS_DONE ) || ( !pStream->avail_in ) || ( !pStream->avail_out ) || ( pState->m_dict_avail ) )
1013                                break;
1014                }
1015
1016                return ( ( status == TINFL_STATUS_DONE ) && ( !pState->m_dict_avail ) ) ? MZ_STREAM_END : MZ_OK;
1017        }
1018
1019        int mz_inflateEnd( mz_streamp pStream )
1020        {
1021                if ( !pStream )
1022                        return MZ_STREAM_ERROR;
1023                if ( pStream->state )
1024                {
1025                        pStream->zfree( pStream->opaque, pStream->state );
1026                        pStream->state = NULL;
1027                }
1028                return MZ_OK;
1029        }
1030
1031        int mz_uncompress( unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len )
1032        {
1033                mz_stream stream;
1034                int status;
1035                memset( &stream, 0, sizeof( stream ) );
1036
1037                // In case mz_ulong is 64-bits (argh I hate longs).
1038                if ( ( source_len | *pDest_len ) > 0xFFFFFFFFU ) return MZ_PARAM_ERROR;
1039
1040                stream.next_in = pSource;
1041                stream.avail_in = (mz_uint32)source_len;
1042                stream.next_out = pDest;
1043                stream.avail_out = (mz_uint32)*pDest_len;
1044
1045                status = mz_inflateInit( &stream );
1046                if ( status != MZ_OK )
1047                        return status;
1048
1049                status = mz_inflate( &stream, MZ_FINISH );
1050                if ( status != MZ_STREAM_END )
1051                {
1052                        mz_inflateEnd( &stream );
1053                        return ( ( status == MZ_BUF_ERROR ) && ( !stream.avail_in ) ) ? MZ_DATA_ERROR : status;
1054                }
1055                *pDest_len = stream.total_out;
1056
1057                return mz_inflateEnd( &stream );
1058        }
1059
1060        const char *mz_error( int err )
1061        {
1062                static struct { int m_err; const char *m_pDesc; } s_error_descs[] =
1063                {
1064                        { MZ_OK, "" },{ MZ_STREAM_END, "stream end" },{ MZ_NEED_DICT, "need dictionary" },{ MZ_ERRNO, "file error" },{ MZ_STREAM_ERROR, "stream error" },
1065                        { MZ_DATA_ERROR, "data error" },{ MZ_MEM_ERROR, "out of memory" },{ MZ_BUF_ERROR, "buf error" },{ MZ_VERSION_ERROR, "version error" },{ MZ_PARAM_ERROR, "parameter error" }
1066                };
1067                mz_uint i; for ( i = 0; i < sizeof( s_error_descs ) / sizeof( s_error_descs[0] ); ++i ) if ( s_error_descs[i].m_err == err ) return s_error_descs[i].m_pDesc;
1068                return NULL;
1069        }
1070
1071#endif //MINIZ_NO_ZLIB_APIS
1072
1073        // ------------------- Low-level Decompression (completely independent from all compression API's)
1074
1075#define TINFL_MEMCPY(d, s, l) memcpy(d, s, l)
1076#define TINFL_MEMSET(p, c, l) memset(p, c, l)
1077
1078#define TINFL_CR_BEGIN switch(r->m_state) { case 0:
1079#define TINFL_CR_RETURN(state_index, result) do { status = result; r->m_state = state_index; goto common_exit; case state_index:; } MZ_MACRO_END
1080#define TINFL_CR_RETURN_FOREVER(state_index, result) do { for ( ; ; ) { TINFL_CR_RETURN(state_index, result); } } MZ_MACRO_END
1081#define TINFL_CR_FINISH }
1082
1083        // TODO: If the caller has indicated that there's no more input, and we attempt to read beyond the input buf, then something is wrong with the input because the inflator never
1084        // reads ahead more than it needs to. Currently TINFL_GET_BYTE() pads the end of the stream with 0's in this scenario.
1085#define TINFL_GET_BYTE(state_index, c) do { \
1086  if (pIn_buf_cur >= pIn_buf_end) { \
1087    for ( ; ; ) { \
1088      if (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) { \
1089        TINFL_CR_RETURN(state_index, TINFL_STATUS_NEEDS_MORE_INPUT); \
1090        if (pIn_buf_cur < pIn_buf_end) { \
1091          c = *pIn_buf_cur++; \
1092          break; \
1093        } \
1094      } else { \
1095        c = 0; \
1096        break; \
1097      } \
1098    } \
1099  } else c = *pIn_buf_cur++; } MZ_MACRO_END
1100
1101#define TINFL_NEED_BITS(state_index, n) do { mz_uint c; TINFL_GET_BYTE(state_index, c); bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); num_bits += 8; } while (num_bits < (mz_uint)(n))
1102#define TINFL_SKIP_BITS(state_index, n) do { if (num_bits < (mz_uint)(n)) { TINFL_NEED_BITS(state_index, n); } bit_buf >>= (n); num_bits -= (n); } MZ_MACRO_END
1103#define TINFL_GET_BITS(state_index, b, n) do { if (num_bits < (mz_uint)(n)) { TINFL_NEED_BITS(state_index, n); } b = bit_buf & ((1 << (n)) - 1); bit_buf >>= (n); num_bits -= (n); } MZ_MACRO_END
1104
1105        // TINFL_HUFF_BITBUF_FILL() is only used rarely, when the number of bytes remaining in the input buffer falls below 2.
1106        // It reads just enough bytes from the input stream that are needed to decode the next Huffman code (and absolutely no more). It works by trying to fully decode a
1107        // Huffman code by using whatever bits are currently present in the bit buffer. If this fails, it reads another byte, and tries again until it succeeds or until the
1108        // bit buffer contains >=15 bits (deflate's max. Huffman code size).
1109#define TINFL_HUFF_BITBUF_FILL(state_index, pHuff) \
1110  do { \
1111    temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]; \
1112    if (temp >= 0) { \
1113      code_len = temp >> 9; \
1114      if ((code_len) && (num_bits >= code_len)) \
1115      break; \
1116    } else if (num_bits > TINFL_FAST_LOOKUP_BITS) { \
1117       code_len = TINFL_FAST_LOOKUP_BITS; \
1118       do { \
1119          temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; \
1120       } while ((temp < 0) && (num_bits >= (code_len + 1))); if (temp >= 0) break; \
1121    } TINFL_GET_BYTE(state_index, c); bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); num_bits += 8; \
1122  } while (num_bits < 15);
1123
1124        // TINFL_HUFF_DECODE() decodes the next Huffman coded symbol. It's more complex than you would initially expect because the zlib API expects the decompressor to never read
1125        // beyond the final byte of the deflate stream. (In other words, when this macro wants to read another byte from the input, it REALLY needs another byte in order to fully
1126        // decode the next Huffman code.) Handling this properly is particularly important on raw deflate (non-zlib) streams, which aren't followed by a byte aligned adler-32.
1127        // The slow path is only executed at the very end of the input buffer.
1128#define TINFL_HUFF_DECODE(state_index, sym, pHuff) do { \
1129  int temp; mz_uint code_len, c; \
1130  if (num_bits < 15) { \
1131    if ((pIn_buf_end - pIn_buf_cur) < 2) { \
1132       TINFL_HUFF_BITBUF_FILL(state_index, pHuff); \
1133    } else { \
1134       bit_buf |= (((tinfl_bit_buf_t)pIn_buf_cur[0]) << num_bits) | (((tinfl_bit_buf_t)pIn_buf_cur[1]) << (num_bits + 8)); pIn_buf_cur += 2; num_bits += 16; \
1135    } \
1136  } \
1137  if ((temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0) \
1138    code_len = temp >> 9, temp &= 511; \
1139  else { \
1140    code_len = TINFL_FAST_LOOKUP_BITS; do { temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; } while (temp < 0); \
1141  } sym = temp; bit_buf >>= code_len; num_bits -= code_len; } MZ_MACRO_END
1142
1143        tinfl_status tinfl_decompress( tinfl_decompressor *r, const mz_uint8 *pIn_buf_next, size_t *pIn_buf_size, mz_uint8 *pOut_buf_start, mz_uint8 *pOut_buf_next, size_t *pOut_buf_size, const mz_uint32 decomp_flags )
1144        {
1145                static const int s_length_base[31] = { 3,4,5,6,7,8,9,10,11,13, 15,17,19,23,27,31,35,43,51,59, 67,83,99,115,131,163,195,227,258,0,0 };
1146                static const int s_length_extra[31] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 };
1147                static const int s_dist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193, 257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0 };
1148                static const int s_dist_extra[32] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13 };
1149                static const mz_uint8 s_length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 };
1150                static const int s_min_table_sizes[3] = { 257, 1, 4 };
1151
1152                tinfl_status status = TINFL_STATUS_FAILED; mz_uint32 num_bits, dist, counter, num_extra; tinfl_bit_buf_t bit_buf;
1153                const mz_uint8 *pIn_buf_cur = pIn_buf_next, *const pIn_buf_end = pIn_buf_next + *pIn_buf_size;
1154                mz_uint8 *pOut_buf_cur = pOut_buf_next, *const pOut_buf_end = pOut_buf_next + *pOut_buf_size;
1155                size_t out_buf_size_mask = ( decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF ) ? (size_t)-1 : ( ( pOut_buf_next - pOut_buf_start ) + *pOut_buf_size ) - 1, dist_from_out_buf_start;
1156
1157                // Ensure the output buffer's size is a power of 2, unless the output buffer is large enough to hold the entire output file (in which case it doesn't matter).
1158                if ( ( ( out_buf_size_mask + 1 ) & out_buf_size_mask ) || ( pOut_buf_next < pOut_buf_start ) ) { *pIn_buf_size = *pOut_buf_size = 0; return TINFL_STATUS_BAD_PARAM; }
1159
1160                num_bits = r->m_num_bits; bit_buf = r->m_bit_buf; dist = r->m_dist; counter = r->m_counter; num_extra = r->m_num_extra; dist_from_out_buf_start = r->m_dist_from_out_buf_start;
1161                TINFL_CR_BEGIN
1162
1163                        bit_buf = num_bits = dist = counter = num_extra = r->m_zhdr0 = r->m_zhdr1 = 0; r->m_z_adler32 = r->m_check_adler32 = 1;
1164                if ( decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER )
1165                {
1166                        TINFL_GET_BYTE( 1, r->m_zhdr0 ); TINFL_GET_BYTE( 2, r->m_zhdr1 );
1167                        counter = ( ( ( r->m_zhdr0 * 256 + r->m_zhdr1 ) % 31 != 0 ) || ( r->m_zhdr1 & 32 ) || ( ( r->m_zhdr0 & 15 ) != 8 ) );
1168                        if ( !( decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF ) ) counter |= ( ( ( 1U << ( 8U + ( r->m_zhdr0 >> 4 ) ) ) > 32768U ) || ( ( out_buf_size_mask + 1 ) < (uint32)( 1U << ( 8U + ( r->m_zhdr0 >> 4 ) ) ) ) );
1169                        if ( counter ) { TINFL_CR_RETURN_FOREVER( 36, TINFL_STATUS_FAILED ); }
1170                }
1171
1172                do
1173                {
1174                        TINFL_GET_BITS( 3, r->m_final, 3 ); r->m_type = r->m_final >> 1;
1175                        if ( r->m_type == 0 )
1176                        {
1177                                TINFL_SKIP_BITS( 5, num_bits & 7 );
1178                                for ( counter = 0; counter < 4; ++counter ) { if ( num_bits ) TINFL_GET_BITS( 6, r->m_raw_header[counter], 8 ); else TINFL_GET_BYTE( 7, r->m_raw_header[counter] ); }
1179                                if ( ( counter = ( r->m_raw_header[0] | ( r->m_raw_header[1] << 8 ) ) ) != (mz_uint)( 0xFFFF ^ ( r->m_raw_header[2] | ( r->m_raw_header[3] << 8 ) ) ) ) { TINFL_CR_RETURN_FOREVER( 39, TINFL_STATUS_FAILED ); }
1180                                while ( ( counter ) && ( num_bits ) )
1181                                {
1182                                        TINFL_GET_BITS( 51, dist, 8 );
1183                                        while ( pOut_buf_cur >= pOut_buf_end ) { TINFL_CR_RETURN( 52, TINFL_STATUS_HAS_MORE_OUTPUT ); }
1184                                        *pOut_buf_cur++ = (mz_uint8)dist;
1185                                        counter--;
1186                                }
1187                                while ( counter )
1188                                {
1189                                        size_t n; while ( pOut_buf_cur >= pOut_buf_end ) { TINFL_CR_RETURN( 9, TINFL_STATUS_HAS_MORE_OUTPUT ); }
1190                                        while ( pIn_buf_cur >= pIn_buf_end )
1191                                        {
1192                                                if ( decomp_flags & TINFL_FLAG_HAS_MORE_INPUT )
1193                                                {
1194                                                        TINFL_CR_RETURN( 38, TINFL_STATUS_NEEDS_MORE_INPUT );
1195                                                }
1196                                                else
1197                                                {
1198                                                        TINFL_CR_RETURN_FOREVER( 40, TINFL_STATUS_FAILED );
1199                                                }
1200                                        }
1201                                        n = MZ_MIN( MZ_MIN( (size_t)( pOut_buf_end - pOut_buf_cur ), (size_t)( pIn_buf_end - pIn_buf_cur ) ), counter );
1202                                        TINFL_MEMCPY( pOut_buf_cur, pIn_buf_cur, n ); pIn_buf_cur += n; pOut_buf_cur += n; counter -= (mz_uint)n;
1203                                }
1204                        }
1205                        else if ( r->m_type == 3 )
1206                        {
1207                                TINFL_CR_RETURN_FOREVER( 10, TINFL_STATUS_FAILED );
1208                        }
1209                        else
1210                        {
1211                                if ( r->m_type == 1 )
1212                                {
1213                                        mz_uint8 *p = r->m_tables[0].m_code_size; mz_uint i;
1214                                        r->m_table_sizes[0] = 288; r->m_table_sizes[1] = 32; TINFL_MEMSET( r->m_tables[1].m_code_size, 5, 32 );
1215                                        for ( i = 0; i <= 143; ++i ) *p++ = 8; for ( ; i <= 255; ++i ) *p++ = 9; for ( ; i <= 279; ++i ) *p++ = 7; for ( ; i <= 287; ++i ) *p++ = 8;
1216                                }
1217                                else
1218                                {
1219                                        for ( counter = 0; counter < 3; counter++ ) { TINFL_GET_BITS( 11, r->m_table_sizes[counter], "\05\05\04"[counter] ); r->m_table_sizes[counter] += s_min_table_sizes[counter]; }
1220                                        MZ_CLEAR_OBJ( r->m_tables[2].m_code_size ); for ( counter = 0; counter < r->m_table_sizes[2]; counter++ ) { mz_uint s; TINFL_GET_BITS( 14, s, 3 ); r->m_tables[2].m_code_size[s_length_dezigzag[counter]] = (mz_uint8)s; }
1221                                        r->m_table_sizes[2] = 19;
1222                                }
1223                                for ( ; (int)r->m_type >= 0; r->m_type-- )
1224                                {
1225                                        int tree_next, tree_cur; tinfl_huff_table *pTable;
1226                                        mz_uint i, j, used_syms, total, sym_index, next_code[17], total_syms[16]; pTable = &r->m_tables[r->m_type]; MZ_CLEAR_OBJ( total_syms ); MZ_CLEAR_OBJ( pTable->m_look_up ); MZ_CLEAR_OBJ( pTable->m_tree );
1227                                        for ( i = 0; i < r->m_table_sizes[r->m_type]; ++i ) total_syms[pTable->m_code_size[i]]++;
1228                                        used_syms = 0, total = 0; next_code[0] = next_code[1] = 0;
1229                                        for ( i = 1; i <= 15; ++i ) { used_syms += total_syms[i]; next_code[i + 1] = ( total = ( ( total + total_syms[i] ) << 1 ) ); }
1230                                        if ( ( 65536 != total ) && ( used_syms > 1 ) )
1231                                        {
1232                                                TINFL_CR_RETURN_FOREVER( 35, TINFL_STATUS_FAILED );
1233                                        }
1234                                        for ( tree_next = -1, sym_index = 0; sym_index < r->m_table_sizes[r->m_type]; ++sym_index )
1235                                        {
1236                                                mz_uint rev_code = 0, l, cur_code, code_size = pTable->m_code_size[sym_index]; if ( !code_size ) continue;
1237                                                cur_code = next_code[code_size]++; for ( l = code_size; l > 0; l--, cur_code >>= 1 ) rev_code = ( rev_code << 1 ) | ( cur_code & 1 );
1238                                                if ( code_size <= TINFL_FAST_LOOKUP_BITS ) { mz_int16 k = (mz_int16)( ( code_size << 9 ) | sym_index ); while ( rev_code < TINFL_FAST_LOOKUP_SIZE ) { pTable->m_look_up[rev_code] = k; rev_code += ( 1 << code_size ); } continue; }
1239                                                if ( 0 == ( tree_cur = pTable->m_look_up[rev_code & ( TINFL_FAST_LOOKUP_SIZE - 1 )] ) ) { pTable->m_look_up[rev_code & ( TINFL_FAST_LOOKUP_SIZE - 1 )] = (mz_int16)tree_next; tree_cur = tree_next; tree_next -= 2; }
1240                                                rev_code >>= ( TINFL_FAST_LOOKUP_BITS - 1 );
1241                                                for ( j = code_size; j > ( TINFL_FAST_LOOKUP_BITS + 1 ); j-- )
1242                                                {
1243                                                        tree_cur -= ( ( rev_code >>= 1 ) & 1 );
1244                                                        if ( !pTable->m_tree[-tree_cur - 1] ) { pTable->m_tree[-tree_cur - 1] = (mz_int16)tree_next; tree_cur = tree_next; tree_next -= 2; }
1245                                                        else tree_cur = pTable->m_tree[-tree_cur - 1];
1246                                                }
1247                                                tree_cur -= ( ( rev_code >>= 1 ) & 1 ); pTable->m_tree[-tree_cur - 1] = (mz_int16)sym_index;
1248                                        }
1249                                        if ( r->m_type == 2 )
1250                                        {
1251                                                for ( counter = 0; counter < ( r->m_table_sizes[0] + r->m_table_sizes[1] ); )
1252                                                {
1253                                                        mz_uint s; TINFL_HUFF_DECODE( 16, dist, &r->m_tables[2] ); if ( dist < 16 ) { r->m_len_codes[counter++] = (mz_uint8)dist; continue; }
1254                                                        if ( ( dist == 16 ) && ( !counter ) )
1255                                                        {
1256                                                                TINFL_CR_RETURN_FOREVER( 17, TINFL_STATUS_FAILED );
1257                                                        }
1258                                                        num_extra = "\02\03\07"[dist - 16]; TINFL_GET_BITS( 18, s, num_extra ); s += "\03\03\013"[dist - 16];
1259                                                        TINFL_MEMSET( r->m_len_codes + counter, ( dist == 16 ) ? r->m_len_codes[counter - 1] : 0, s ); counter += s;
1260                                                }
1261                                                if ( ( r->m_table_sizes[0] + r->m_table_sizes[1] ) != counter )
1262                                                {
1263                                                        TINFL_CR_RETURN_FOREVER( 21, TINFL_STATUS_FAILED );
1264                                                }
1265                                                TINFL_MEMCPY( r->m_tables[0].m_code_size, r->m_len_codes, r->m_table_sizes[0] ); TINFL_MEMCPY( r->m_tables[1].m_code_size, r->m_len_codes + r->m_table_sizes[0], r->m_table_sizes[1] );
1266                                        }
1267                                }
1268                                for ( ; ; )
1269                                {
1270                                        mz_uint8 *pSrc;
1271                                        for ( ; ; )
1272                                        {
1273                                                if ( ( ( pIn_buf_end - pIn_buf_cur ) < 4 ) || ( ( pOut_buf_end - pOut_buf_cur ) < 2 ) )
1274                                                {
1275                                                        TINFL_HUFF_DECODE( 23, counter, &r->m_tables[0] );
1276                                                        if ( counter >= 256 )
1277                                                                break;
1278                                                        while ( pOut_buf_cur >= pOut_buf_end ) { TINFL_CR_RETURN( 24, TINFL_STATUS_HAS_MORE_OUTPUT ); }
1279                                                        *pOut_buf_cur++ = (mz_uint8)counter;
1280                                                }
1281                                                else
1282                                                {
1283                                                        int sym2; mz_uint code_len;
1284#if NV_ARCHITECTURE == NV_64BIT
1285                                                        if ( num_bits < 30 ) { bit_buf |= ( ( (tinfl_bit_buf_t)MZ_READ_LE32( pIn_buf_cur ) ) << num_bits ); pIn_buf_cur += 4; num_bits += 32; }
1286#else
1287                                                        if ( num_bits < 15 ) { bit_buf |= ( ( (tinfl_bit_buf_t)MZ_READ_LE16( pIn_buf_cur ) ) << num_bits ); pIn_buf_cur += 2; num_bits += 16; }
1288#endif
1289                                                        if ( ( sym2 = r->m_tables[0].m_look_up[bit_buf & ( TINFL_FAST_LOOKUP_SIZE - 1 )] ) >= 0 )
1290                                                                code_len = sym2 >> 9;
1291                                                        else
1292                                                        {
1293                                                                code_len = TINFL_FAST_LOOKUP_BITS; do { sym2 = r->m_tables[0].m_tree[~sym2 + ( ( bit_buf >> code_len++ ) & 1 )]; } while ( sym2 < 0 );
1294                                                        }
1295                                                        counter = sym2; bit_buf >>= code_len; num_bits -= code_len;
1296                                                        if ( counter & 256 )
1297                                                                break;
1298
1299#if NV_ARCHITECTURE == NV_32BIT
1300                                                        if ( num_bits < 15 ) { bit_buf |= ( ( (tinfl_bit_buf_t)MZ_READ_LE16( pIn_buf_cur ) ) << num_bits ); pIn_buf_cur += 2; num_bits += 16; }
1301#endif
1302                                                        if ( ( sym2 = r->m_tables[0].m_look_up[bit_buf & ( TINFL_FAST_LOOKUP_SIZE - 1 )] ) >= 0 )
1303                                                                code_len = sym2 >> 9;
1304                                                        else
1305                                                        {
1306                                                                code_len = TINFL_FAST_LOOKUP_BITS; do { sym2 = r->m_tables[0].m_tree[~sym2 + ( ( bit_buf >> code_len++ ) & 1 )]; } while ( sym2 < 0 );
1307                                                        }
1308                                                        bit_buf >>= code_len; num_bits -= code_len;
1309
1310                                                        pOut_buf_cur[0] = (mz_uint8)counter;
1311                                                        if ( sym2 & 256 )
1312                                                        {
1313                                                                pOut_buf_cur++;
1314                                                                counter = sym2;
1315                                                                break;
1316                                                        }
1317                                                        pOut_buf_cur[1] = (mz_uint8)sym2;
1318                                                        pOut_buf_cur += 2;
1319                                                }
1320                                        }
1321                                        if ( ( counter &= 511 ) == 256 ) break;
1322
1323                                        num_extra = s_length_extra[counter - 257]; counter = s_length_base[counter - 257];
1324                                        if ( num_extra ) { mz_uint extra_bits; TINFL_GET_BITS( 25, extra_bits, num_extra ); counter += extra_bits; }
1325
1326                                        TINFL_HUFF_DECODE( 26, dist, &r->m_tables[1] );
1327                                        num_extra = s_dist_extra[dist]; dist = s_dist_base[dist];
1328                                        if ( num_extra ) { mz_uint extra_bits; TINFL_GET_BITS( 27, extra_bits, num_extra ); dist += extra_bits; }
1329
1330                                        dist_from_out_buf_start = pOut_buf_cur - pOut_buf_start;
1331                                        if ( ( dist > dist_from_out_buf_start ) && ( decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF ) )
1332                                        {
1333                                                TINFL_CR_RETURN_FOREVER( 37, TINFL_STATUS_FAILED );
1334                                        }
1335
1336                                        pSrc = pOut_buf_start + ( ( dist_from_out_buf_start - dist ) & out_buf_size_mask );
1337
1338                                        if ( ( MZ_MAX( pOut_buf_cur, pSrc ) + counter ) > pOut_buf_end )
1339                                        {
1340                                                while ( counter-- )
1341                                                {
1342                                                        while ( pOut_buf_cur >= pOut_buf_end ) { TINFL_CR_RETURN( 53, TINFL_STATUS_HAS_MORE_OUTPUT ); }
1343                                                        *pOut_buf_cur++ = pOut_buf_start[( dist_from_out_buf_start++ - dist ) & out_buf_size_mask];
1344                                                }
1345                                                continue;
1346                                        }
1347#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES
1348                                        else if ( ( counter >= 9 ) && ( counter <= dist ) )
1349                                        {
1350                                                const mz_uint8 *pSrc_end = pSrc + ( counter & ~7 );
1351                                                do
1352                                                {
1353                                                        ( (mz_uint32 *)pOut_buf_cur )[0] = ( (const mz_uint32 *)pSrc )[0];
1354                                                        ( (mz_uint32 *)pOut_buf_cur )[1] = ( (const mz_uint32 *)pSrc )[1];
1355                                                        pOut_buf_cur += 8;
1356                                                } while ( ( pSrc += 8 ) < pSrc_end );
1357                                                if ( ( counter &= 7 ) < 3 )
1358                                                {
1359                                                        if ( counter )
1360                                                        {
1361                                                                pOut_buf_cur[0] = pSrc[0];
1362                                                                if ( counter > 1 )
1363                                                                        pOut_buf_cur[1] = pSrc[1];
1364                                                                pOut_buf_cur += counter;
1365                                                        }
1366                                                        continue;
1367                                                }
1368                                        }
1369#endif
1370                                        do
1371                                        {
1372                                                pOut_buf_cur[0] = pSrc[0];
1373                                                pOut_buf_cur[1] = pSrc[1];
1374                                                pOut_buf_cur[2] = pSrc[2];
1375                                                pOut_buf_cur += 3; pSrc += 3;
1376                                        } while ( (int)( counter -= 3 ) > 2 );
1377                                        if ( (int)counter > 0 )
1378                                        {
1379                                                pOut_buf_cur[0] = pSrc[0];
1380                                                if ( (int)counter > 1 )
1381                                                        pOut_buf_cur[1] = pSrc[1];
1382                                                pOut_buf_cur += counter;
1383                                        }
1384                                }
1385                        }
1386                } while ( !( r->m_final & 1 ) );
1387                if ( decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER )
1388                {
1389                        TINFL_SKIP_BITS( 32, num_bits & 7 ); for ( counter = 0; counter < 4; ++counter ) { mz_uint s; if ( num_bits ) TINFL_GET_BITS( 41, s, 8 ); else TINFL_GET_BYTE( 42, s ); r->m_z_adler32 = ( r->m_z_adler32 << 8 ) | s; }
1390                }
1391                TINFL_CR_RETURN_FOREVER( 34, TINFL_STATUS_DONE );
1392                TINFL_CR_FINISH
1393
1394                        common_exit :
1395                r->m_num_bits = num_bits; r->m_bit_buf = bit_buf; r->m_dist = dist; r->m_counter = counter; r->m_num_extra = num_extra; r->m_dist_from_out_buf_start = dist_from_out_buf_start;
1396                *pIn_buf_size = pIn_buf_cur - pIn_buf_next; *pOut_buf_size = pOut_buf_cur - pOut_buf_next;
1397                if ( ( decomp_flags & ( TINFL_FLAG_PARSE_ZLIB_HEADER | TINFL_FLAG_COMPUTE_ADLER32 ) ) && ( status >= 0 ) )
1398                {
1399                        const mz_uint8 *ptr = pOut_buf_next; size_t buf_len = *pOut_buf_size;
1400                        mz_uint32 i, s1 = r->m_check_adler32 & 0xffff, s2 = r->m_check_adler32 >> 16; size_t block_len = buf_len % 5552;
1401                        while ( buf_len )
1402                        {
1403                                for ( i = 0; i + 7 < block_len; i += 8, ptr += 8 )
1404                                {
1405                                        s1 += ptr[0], s2 += s1; s1 += ptr[1], s2 += s1; s1 += ptr[2], s2 += s1; s1 += ptr[3], s2 += s1;
1406                                        s1 += ptr[4], s2 += s1; s1 += ptr[5], s2 += s1; s1 += ptr[6], s2 += s1; s1 += ptr[7], s2 += s1;
1407                                }
1408                                for ( ; i < block_len; ++i ) s1 += *ptr++, s2 += s1;
1409                                s1 %= 65521U, s2 %= 65521U; buf_len -= block_len; block_len = 5552;
1410                        }
1411                        r->m_check_adler32 = ( s2 << 16 ) + s1; if ( ( status == TINFL_STATUS_DONE ) && ( decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER ) && ( r->m_check_adler32 != r->m_z_adler32 ) ) status = TINFL_STATUS_ADLER32_MISMATCH;
1412                }
1413                return status;
1414        }
1415
1416        // Higher level helper functions.
1417        void *tinfl_decompress_mem_to_heap( const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags )
1418        {
1419                tinfl_decompressor decomp; void *pBuf = NULL, *pNew_buf; size_t src_buf_ofs = 0, out_buf_capacity = 0;
1420                *pOut_len = 0;
1421                tinfl_init( &decomp );
1422                for ( ; ; )
1423                {
1424                        size_t src_buf_size = src_buf_len - src_buf_ofs, dst_buf_size = out_buf_capacity - *pOut_len, new_out_buf_capacity;
1425                        tinfl_status status = tinfl_decompress( &decomp, (const mz_uint8*)pSrc_buf + src_buf_ofs, &src_buf_size, (mz_uint8*)pBuf, pBuf ? (mz_uint8*)pBuf + *pOut_len : NULL, &dst_buf_size,
1426                                ( flags & ~TINFL_FLAG_HAS_MORE_INPUT ) | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF );
1427                        if ( ( status < 0 ) || ( status == TINFL_STATUS_NEEDS_MORE_INPUT ) )
1428                        {
1429                                MZ_FREE( pBuf ); *pOut_len = 0; return NULL;
1430                        }
1431                        src_buf_ofs += src_buf_size;
1432                        *pOut_len += dst_buf_size;
1433                        if ( status == TINFL_STATUS_DONE ) break;
1434                        new_out_buf_capacity = out_buf_capacity * 2; if ( new_out_buf_capacity < 128 ) new_out_buf_capacity = 128;
1435                        pNew_buf = MZ_REALLOC( pBuf, new_out_buf_capacity );
1436                        if ( !pNew_buf )
1437                        {
1438                                MZ_FREE( pBuf ); *pOut_len = 0; return NULL;
1439                        }
1440                        pBuf = pNew_buf; out_buf_capacity = new_out_buf_capacity;
1441                }
1442                return pBuf;
1443        }
1444
1445        size_t tinfl_decompress_mem_to_mem( void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags )
1446        {
1447                tinfl_decompressor decomp; tinfl_status status; tinfl_init( &decomp );
1448                status = tinfl_decompress( &decomp, (const mz_uint8*)pSrc_buf, &src_buf_len, (mz_uint8*)pOut_buf, (mz_uint8*)pOut_buf, &out_buf_len, ( flags & ~TINFL_FLAG_HAS_MORE_INPUT ) | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF );
1449                return ( status != TINFL_STATUS_DONE ) ? TINFL_DECOMPRESS_MEM_TO_MEM_FAILED : out_buf_len;
1450        }
1451
1452        int tinfl_decompress_mem_to_callback( const void *pIn_buf, size_t *pIn_buf_size, tinfl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags )
1453        {
1454                int result = 0;
1455                tinfl_decompressor decomp;
1456                mz_uint8 *pDict = (mz_uint8*)MZ_MALLOC( TINFL_LZ_DICT_SIZE ); size_t in_buf_ofs = 0, dict_ofs = 0;
1457                if ( !pDict )
1458                        return TINFL_STATUS_FAILED;
1459                tinfl_init( &decomp );
1460                for ( ; ; )
1461                {
1462                        size_t in_buf_size = *pIn_buf_size - in_buf_ofs, dst_buf_size = TINFL_LZ_DICT_SIZE - dict_ofs;
1463                        tinfl_status status = tinfl_decompress( &decomp, (const mz_uint8*)pIn_buf + in_buf_ofs, &in_buf_size, pDict, pDict + dict_ofs, &dst_buf_size,
1464                                ( flags & ~( TINFL_FLAG_HAS_MORE_INPUT | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF ) ) );
1465                        in_buf_ofs += in_buf_size;
1466                        if ( ( dst_buf_size ) && ( !( *pPut_buf_func )( pDict + dict_ofs, (int)dst_buf_size, pPut_buf_user ) ) )
1467                                break;
1468                        if ( status != TINFL_STATUS_HAS_MORE_OUTPUT )
1469                        {
1470                                result = ( status == TINFL_STATUS_DONE );
1471                                break;
1472                        }
1473                        dict_ofs = ( dict_ofs + dst_buf_size ) & ( TINFL_LZ_DICT_SIZE - 1 );
1474                }
1475                MZ_FREE( pDict );
1476                *pIn_buf_size = in_buf_ofs;
1477                return result;
1478        }
1479
1480        // ------------------- Low-level Compression (independent from all decompression API's)
1481
1482        // Purposely making these tables static for faster init and thread safety.
1483        static const mz_uint16 s_tdefl_len_sym[256] = {
1484                257,258,259,260,261,262,263,264,265,265,266,266,267,267,268,268,269,269,269,269,270,270,270,270,271,271,271,271,272,272,272,272,
1485                273,273,273,273,273,273,273,273,274,274,274,274,274,274,274,274,275,275,275,275,275,275,275,275,276,276,276,276,276,276,276,276,
1486                277,277,277,277,277,277,277,277,277,277,277,277,277,277,277,277,278,278,278,278,278,278,278,278,278,278,278,278,278,278,278,278,
1487                279,279,279,279,279,279,279,279,279,279,279,279,279,279,279,279,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,
1488                281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,
1489                282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,
1490                283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,
1491                284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,285 };
1492
1493        static const mz_uint8 s_tdefl_len_extra[256] = {
1494                0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
1495                4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
1496                5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
1497                5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,0 };
1498
1499        static const mz_uint8 s_tdefl_small_dist_sym[512] = {
1500                0,1,2,3,4,4,5,5,6,6,6,6,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,
1501                11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,
1502                13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,14,
1503                14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,
1504                14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,
1505                15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,
1506                16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,
1507                16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,
1508                16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,17,17,17,17,17,17,17,17,17,17,17,17,17,17,
1509                17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,
1510                17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,
1511                17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17 };
1512
1513        static const mz_uint8 s_tdefl_small_dist_extra[512] = {
1514                0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,
1515                5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
1516                6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
1517                6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
1518                7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
1519                7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
1520                7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
1521                7,7,7,7,7,7,7,7 };
1522
1523        static const mz_uint8 s_tdefl_large_dist_sym[128] = {
1524                0,0,18,19,20,20,21,21,22,22,22,22,23,23,23,23,24,24,24,24,24,24,24,24,25,25,25,25,25,25,25,25,26,26,26,26,26,26,26,26,26,26,26,26,
1525                26,26,26,26,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,
1526                28,28,28,28,28,28,28,28,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29 };
1527
1528        static const mz_uint8 s_tdefl_large_dist_extra[128] = {
1529                0,0,8,8,9,9,9,9,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,
1530                12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,
1531                13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13 };
1532
1533        // Radix sorts tdefl_sym_freq[] array by 16-bit key m_key. Returns ptr to sorted values.
1534        typedef struct { mz_uint16 m_key, m_sym_index; } tdefl_sym_freq;
1535        static tdefl_sym_freq* tdefl_radix_sort_syms( mz_uint num_syms, tdefl_sym_freq* pSyms0, tdefl_sym_freq* pSyms1 )
1536        {
1537                mz_uint32 total_passes = 2, pass_shift, pass, i, hist[256 * 2]; tdefl_sym_freq* pCur_syms = pSyms0, *pNew_syms = pSyms1; MZ_CLEAR_OBJ( hist );
1538                for ( i = 0; i < num_syms; i++ ) { mz_uint freq = pSyms0[i].m_key; hist[freq & 0xFF]++; hist[256 + ( ( freq >> 8 ) & 0xFF )]++; }
1539                while ( ( total_passes > 1 ) && ( num_syms == hist[( total_passes - 1 ) * 256] ) ) total_passes--;
1540                for ( pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8 )
1541                {
1542                        const mz_uint32* pHist = &hist[pass << 8];
1543                        mz_uint offsets[256], cur_ofs = 0;
1544                        for ( i = 0; i < 256; i++ ) { offsets[i] = cur_ofs; cur_ofs += pHist[i]; }
1545                        for ( i = 0; i < num_syms; i++ ) pNew_syms[offsets[( pCur_syms[i].m_key >> pass_shift ) & 0xFF]++] = pCur_syms[i];
1546                        { tdefl_sym_freq* t = pCur_syms; pCur_syms = pNew_syms; pNew_syms = t; }
1547                }
1548                return pCur_syms;
1549        }
1550
1551        // tdefl_calculate_minimum_redundancy() originally written by: Alistair Moffat, alistair@cs.mu.oz.au, Jyrki Katajainen, jyrki@diku.dk, November 1996.
1552        static void tdefl_calculate_minimum_redundancy( tdefl_sym_freq *A, int n )
1553        {
1554                int root, leaf, next, avbl, used, dpth;
1555                if ( n == 0 ) return; else if ( n == 1 ) { A[0].m_key = 1; return; }
1556                A[0].m_key += A[1].m_key; root = 0; leaf = 2;
1557                for ( next = 1; next < n - 1; next++ )
1558                {
1559                        if ( leaf >= n || A[root].m_key < A[leaf].m_key ) { A[next].m_key = A[root].m_key; A[root++].m_key = (mz_uint16)next; }
1560                        else A[next].m_key = A[leaf++].m_key;
1561                        if ( leaf >= n || ( root < next && A[root].m_key < A[leaf].m_key ) ) { A[next].m_key = (mz_uint16)( A[next].m_key + A[root].m_key ); A[root++].m_key = (mz_uint16)next; }
1562                        else A[next].m_key = (mz_uint16)( A[next].m_key + A[leaf++].m_key );
1563                }
1564                A[n - 2].m_key = 0; for ( next = n - 3; next >= 0; next-- ) A[next].m_key = A[A[next].m_key].m_key + 1;
1565                avbl = 1; used = dpth = 0; root = n - 2; next = n - 1;
1566                while ( avbl > 0 )
1567                {
1568                        while ( root >= 0 && (int)A[root].m_key == dpth ) { used++; root--; }
1569                        while ( avbl > used ) { A[next--].m_key = (mz_uint16)( dpth ); avbl--; }
1570                        avbl = 2 * used; dpth++; used = 0;
1571                }
1572        }
1573
1574        // Limits canonical Huffman code table's max code size.
1575        enum { TDEFL_MAX_SUPPORTED_HUFF_CODESIZE = 32 };
1576        static void tdefl_huffman_enforce_max_code_size( int *pNum_codes, int code_list_len, int max_code_size )
1577        {
1578                int i; mz_uint32 total = 0; if ( code_list_len <= 1 ) return;
1579                for ( i = max_code_size + 1; i <= TDEFL_MAX_SUPPORTED_HUFF_CODESIZE; i++ ) pNum_codes[max_code_size] += pNum_codes[i];
1580                for ( i = max_code_size; i > 0; i-- ) total += ( ( (mz_uint32)pNum_codes[i] ) << ( max_code_size - i ) );
1581                while ( total != ( 1UL << max_code_size ) )
1582                {
1583                        pNum_codes[max_code_size]--;
1584                        for ( i = max_code_size - 1; i > 0; i-- ) if ( pNum_codes[i] ) { pNum_codes[i]--; pNum_codes[i + 1] += 2; break; }
1585                        total--;
1586                }
1587        }
1588
1589        static void tdefl_optimize_huffman_table( tdefl_compressor *d, int table_num, int table_len, int code_size_limit, int static_table )
1590        {
1591                int i, j, l, num_codes[1 + TDEFL_MAX_SUPPORTED_HUFF_CODESIZE]; mz_uint next_code[TDEFL_MAX_SUPPORTED_HUFF_CODESIZE + 1]; MZ_CLEAR_OBJ( num_codes );
1592                if ( static_table )
1593                {
1594                        for ( i = 0; i < table_len; i++ ) num_codes[d->m_huff_code_sizes[table_num][i]]++;
1595                }
1596                else
1597                {
1598                        tdefl_sym_freq syms0[TDEFL_MAX_HUFF_SYMBOLS], syms1[TDEFL_MAX_HUFF_SYMBOLS], *pSyms;
1599                        int num_used_syms = 0;
1600                        const mz_uint16 *pSym_count = &d->m_huff_count[table_num][0];
1601                        for ( i = 0; i < table_len; i++ ) if ( pSym_count[i] ) { syms0[num_used_syms].m_key = (mz_uint16)pSym_count[i]; syms0[num_used_syms++].m_sym_index = (mz_uint16)i; }
1602
1603                        pSyms = tdefl_radix_sort_syms( num_used_syms, syms0, syms1 ); tdefl_calculate_minimum_redundancy( pSyms, num_used_syms );
1604
1605                        for ( i = 0; i < num_used_syms; i++ ) num_codes[pSyms[i].m_key]++;
1606
1607                        tdefl_huffman_enforce_max_code_size( num_codes, num_used_syms, code_size_limit );
1608
1609                        MZ_CLEAR_OBJ( d->m_huff_code_sizes[table_num] ); MZ_CLEAR_OBJ( d->m_huff_codes[table_num] );
1610                        for ( i = 1, j = num_used_syms; i <= code_size_limit; i++ )
1611                                for ( l = num_codes[i]; l > 0; l-- ) d->m_huff_code_sizes[table_num][pSyms[--j].m_sym_index] = (mz_uint8)( i );
1612                }
1613
1614                next_code[1] = 0; for ( j = 0, i = 2; i <= code_size_limit; i++ ) next_code[i] = j = ( ( j + num_codes[i - 1] ) << 1 );
1615
1616                for ( i = 0; i < table_len; i++ )
1617                {
1618                        mz_uint rev_code = 0, code, code_size; if ( ( code_size = d->m_huff_code_sizes[table_num][i] ) == 0 ) continue;
1619                        code = next_code[code_size]++; for ( l = code_size; l > 0; l--, code >>= 1 ) rev_code = ( rev_code << 1 ) | ( code & 1 );
1620                        d->m_huff_codes[table_num][i] = (mz_uint16)rev_code;
1621                }
1622        }
1623
1624#define TDEFL_PUT_BITS(b, l) do { \
1625  mz_uint bits = b; mz_uint len = l; MZ_ASSERT(bits <= ((1U << len) - 1U)); \
1626  d->m_bit_buffer |= (bits << d->m_bits_in); d->m_bits_in += len; \
1627  while (d->m_bits_in >= 8) { \
1628    if (d->m_pOutput_buf < d->m_pOutput_buf_end) \
1629      *d->m_pOutput_buf++ = (mz_uint8)(d->m_bit_buffer); \
1630      d->m_bit_buffer >>= 8; \
1631      d->m_bits_in -= 8; \
1632  } \
1633} MZ_MACRO_END
1634
1635#define TDEFL_RLE_PREV_CODE_SIZE() { if (rle_repeat_count) { \
1636  if (rle_repeat_count < 3) { \
1637    d->m_huff_count[2][prev_code_size] = (mz_uint16)(d->m_huff_count[2][prev_code_size] + rle_repeat_count); \
1638    while (rle_repeat_count--) packed_code_sizes[num_packed_code_sizes++] = prev_code_size; \
1639  } else { \
1640    d->m_huff_count[2][16] = (mz_uint16)(d->m_huff_count[2][16] + 1); packed_code_sizes[num_packed_code_sizes++] = 16; packed_code_sizes[num_packed_code_sizes++] = (mz_uint8)(rle_repeat_count - 3); \
1641} rle_repeat_count = 0; } }
1642
1643#define TDEFL_RLE_ZERO_CODE_SIZE() { if (rle_z_count) { \
1644  if (rle_z_count < 3) { \
1645    d->m_huff_count[2][0] = (mz_uint16)(d->m_huff_count[2][0] + rle_z_count); while (rle_z_count--) packed_code_sizes[num_packed_code_sizes++] = 0; \
1646  } else if (rle_z_count <= 10) { \
1647    d->m_huff_count[2][17] = (mz_uint16)(d->m_huff_count[2][17] + 1); packed_code_sizes[num_packed_code_sizes++] = 17; packed_code_sizes[num_packed_code_sizes++] = (mz_uint8)(rle_z_count - 3); \
1648  } else { \
1649    d->m_huff_count[2][18] = (mz_uint16)(d->m_huff_count[2][18] + 1); packed_code_sizes[num_packed_code_sizes++] = 18; packed_code_sizes[num_packed_code_sizes++] = (mz_uint8)(rle_z_count - 11); \
1650} rle_z_count = 0; } }
1651
1652        static mz_uint8 s_tdefl_packed_code_size_syms_swizzle[] = { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
1653
1654        static void tdefl_start_dynamic_block( tdefl_compressor *d )
1655        {
1656                int num_lit_codes, num_dist_codes, num_bit_lengths; mz_uint i, total_code_sizes_to_pack, num_packed_code_sizes, rle_z_count, rle_repeat_count, packed_code_sizes_index;
1657                mz_uint8 code_sizes_to_pack[TDEFL_MAX_HUFF_SYMBOLS_0 + TDEFL_MAX_HUFF_SYMBOLS_1], packed_code_sizes[TDEFL_MAX_HUFF_SYMBOLS_0 + TDEFL_MAX_HUFF_SYMBOLS_1], prev_code_size = 0xFF;
1658
1659                d->m_huff_count[0][256] = 1;
1660
1661                tdefl_optimize_huffman_table( d, 0, TDEFL_MAX_HUFF_SYMBOLS_0, 15, MZ_FALSE );
1662                tdefl_optimize_huffman_table( d, 1, TDEFL_MAX_HUFF_SYMBOLS_1, 15, MZ_FALSE );
1663
1664                for ( num_lit_codes = 286; num_lit_codes > 257; num_lit_codes-- ) if ( d->m_huff_code_sizes[0][num_lit_codes - 1] ) break;
1665                for ( num_dist_codes = 30; num_dist_codes > 1; num_dist_codes-- ) if ( d->m_huff_code_sizes[1][num_dist_codes - 1] ) break;
1666
1667                memcpy( code_sizes_to_pack, &d->m_huff_code_sizes[0][0], num_lit_codes );
1668                memcpy( code_sizes_to_pack + num_lit_codes, &d->m_huff_code_sizes[1][0], num_dist_codes );
1669                total_code_sizes_to_pack = num_lit_codes + num_dist_codes; num_packed_code_sizes = 0; rle_z_count = 0; rle_repeat_count = 0;
1670
1671                memset( &d->m_huff_count[2][0], 0, sizeof( d->m_huff_count[2][0] ) * TDEFL_MAX_HUFF_SYMBOLS_2 );
1672                for ( i = 0; i < total_code_sizes_to_pack; i++ )
1673                {
1674                        mz_uint8 code_size = code_sizes_to_pack[i];
1675                        if ( !code_size )
1676                        {
1677                                TDEFL_RLE_PREV_CODE_SIZE();
1678                                if ( ++rle_z_count == 138 ) { TDEFL_RLE_ZERO_CODE_SIZE(); }
1679                        }
1680                        else
1681                        {
1682                                TDEFL_RLE_ZERO_CODE_SIZE();
1683                                if ( code_size != prev_code_size )
1684                                {
1685                                        TDEFL_RLE_PREV_CODE_SIZE();
1686                                        d->m_huff_count[2][code_size] = (mz_uint16)( d->m_huff_count[2][code_size] + 1 ); packed_code_sizes[num_packed_code_sizes++] = code_size;
1687                                }
1688                                else if ( ++rle_repeat_count == 6 )
1689                                {
1690                                        TDEFL_RLE_PREV_CODE_SIZE();
1691                                }
1692                        }
1693                        prev_code_size = code_size;
1694                }
1695                if ( rle_repeat_count ) { TDEFL_RLE_PREV_CODE_SIZE(); }
1696                else { TDEFL_RLE_ZERO_CODE_SIZE(); }
1697
1698                tdefl_optimize_huffman_table( d, 2, TDEFL_MAX_HUFF_SYMBOLS_2, 7, MZ_FALSE );
1699
1700                TDEFL_PUT_BITS( 2, 2 );
1701
1702                TDEFL_PUT_BITS( num_lit_codes - 257, 5 );
1703                TDEFL_PUT_BITS( num_dist_codes - 1, 5 );
1704
1705                for ( num_bit_lengths = 18; num_bit_lengths >= 0; num_bit_lengths-- ) if ( d->m_huff_code_sizes[2][s_tdefl_packed_code_size_syms_swizzle[num_bit_lengths]] ) break;
1706                num_bit_lengths = MZ_MAX( 4, ( num_bit_lengths + 1 ) ); TDEFL_PUT_BITS( num_bit_lengths - 4, 4 );
1707                for ( i = 0; (int)i < num_bit_lengths; i++ ) TDEFL_PUT_BITS( d->m_huff_code_sizes[2][s_tdefl_packed_code_size_syms_swizzle[i]], 3 );
1708
1709                for ( packed_code_sizes_index = 0; packed_code_sizes_index < num_packed_code_sizes; )
1710                {
1711                        mz_uint code = packed_code_sizes[packed_code_sizes_index++]; MZ_ASSERT( code < TDEFL_MAX_HUFF_SYMBOLS_2 );
1712                        TDEFL_PUT_BITS( d->m_huff_codes[2][code], d->m_huff_code_sizes[2][code] );
1713                        if ( code >= 16 ) TDEFL_PUT_BITS( packed_code_sizes[packed_code_sizes_index++], "\02\03\07"[code - 16] );
1714                }
1715        }
1716
1717        static void tdefl_start_static_block( tdefl_compressor *d )
1718        {
1719                mz_uint i;
1720                mz_uint8 *p = &d->m_huff_code_sizes[0][0];
1721
1722                for ( i = 0; i <= 143; ++i ) *p++ = 8;
1723                for ( ; i <= 255; ++i ) *p++ = 9;
1724                for ( ; i <= 279; ++i ) *p++ = 7;
1725                for ( ; i <= 287; ++i ) *p++ = 8;
1726
1727                memset( d->m_huff_code_sizes[1], 5, 32 );
1728
1729                tdefl_optimize_huffman_table( d, 0, 288, 15, MZ_TRUE );
1730                tdefl_optimize_huffman_table( d, 1, 32, 15, MZ_TRUE );
1731
1732                TDEFL_PUT_BITS( 1, 2 );
1733        }
1734
1735        static const mz_uint mz_bitmasks[17] = { 0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF };
1736
1737#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && NV_ENDIANESS == NV_LITTLEENDIAN && NV_ARCHITECTURE == NV_64BIT
1738
1739        static mz_bool tdefl_compress_lz_codes( tdefl_compressor *d )
1740        {
1741                mz_uint flags;
1742                mz_uint8 *pLZ_codes;
1743                mz_uint8 *pOutput_buf = d->m_pOutput_buf;
1744                mz_uint8 *pLZ_code_buf_end = d->m_pLZ_code_buf;
1745                mz_uint64 bit_buffer = d->m_bit_buffer;
1746                mz_uint bits_in = d->m_bits_in;
1747
1748#define TDEFL_PUT_BITS_FAST(b, l) { bit_buffer |= (((mz_uint64)(b)) << bits_in); bits_in += (l); }
1749
1750                flags = 1;
1751                for ( pLZ_codes = d->m_lz_code_buf; pLZ_codes < pLZ_code_buf_end; flags >>= 1 )
1752                {
1753                        if ( flags == 1 )
1754                                flags = *pLZ_codes++ | 0x100;
1755
1756                        if ( flags & 1 )
1757                        {
1758                                mz_uint s0, s1, n0, n1, sym, num_extra_bits;
1759                                mz_uint match_len = pLZ_codes[0], match_dist = *(const mz_uint16 *)( pLZ_codes + 1 ); pLZ_codes += 3;
1760
1761                                MZ_ASSERT( d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]] );
1762                                TDEFL_PUT_BITS_FAST( d->m_huff_codes[0][s_tdefl_len_sym[match_len]], d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]] );
1763                                TDEFL_PUT_BITS_FAST( match_len & mz_bitmasks[s_tdefl_len_extra[match_len]], s_tdefl_len_extra[match_len] );
1764
1765                                // This sequence coaxes MSVC into using cmov's vs. jmp's.
1766                                s0 = s_tdefl_small_dist_sym[match_dist & 511];
1767                                n0 = s_tdefl_small_dist_extra[match_dist & 511];
1768                                s1 = s_tdefl_large_dist_sym[match_dist >> 8];
1769                                n1 = s_tdefl_large_dist_extra[match_dist >> 8];
1770                                sym = ( match_dist < 512 ) ? s0 : s1;
1771                                num_extra_bits = ( match_dist < 512 ) ? n0 : n1;
1772
1773                                MZ_ASSERT( d->m_huff_code_sizes[1][sym] );
1774                                TDEFL_PUT_BITS_FAST( d->m_huff_codes[1][sym], d->m_huff_code_sizes[1][sym] );
1775                                TDEFL_PUT_BITS_FAST( match_dist & mz_bitmasks[num_extra_bits], num_extra_bits );
1776                        }
1777                        else
1778                        {
1779                                mz_uint lit = *pLZ_codes++;
1780                                MZ_ASSERT( d->m_huff_code_sizes[0][lit] );
1781                                TDEFL_PUT_BITS_FAST( d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit] );
1782
1783                                if ( ( ( flags & 2 ) == 0 ) && ( pLZ_codes < pLZ_code_buf_end ) )
1784                                {
1785                                        flags >>= 1;
1786                                        lit = *pLZ_codes++;
1787                                        MZ_ASSERT( d->m_huff_code_sizes[0][lit] );
1788                                        TDEFL_PUT_BITS_FAST( d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit] );
1789
1790                                        if ( ( ( flags & 2 ) == 0 ) && ( pLZ_codes < pLZ_code_buf_end ) )
1791                                        {
1792                                                flags >>= 1;
1793                                                lit = *pLZ_codes++;
1794                                                MZ_ASSERT( d->m_huff_code_sizes[0][lit] );
1795                                                TDEFL_PUT_BITS_FAST( d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit] );
1796                                        }
1797                                }
1798                        }
1799
1800                        if ( pOutput_buf >= d->m_pOutput_buf_end )
1801                                return MZ_FALSE;
1802
1803                        *(mz_uint64*)pOutput_buf = bit_buffer;
1804                        pOutput_buf += ( bits_in >> 3 );
1805                        bit_buffer >>= ( bits_in & ~7 );
1806                        bits_in &= 7;
1807                }
1808
1809#undef TDEFL_PUT_BITS_FAST
1810
1811                d->m_pOutput_buf = pOutput_buf;
1812                d->m_bits_in = 0;
1813                d->m_bit_buffer = 0;
1814
1815                while ( bits_in )
1816                {
1817                        mz_uint32 n = MZ_MIN( bits_in, 16 );
1818                        TDEFL_PUT_BITS( (mz_uint)bit_buffer & mz_bitmasks[n], n );
1819                        bit_buffer >>= n;
1820                        bits_in -= n;
1821                }
1822
1823                TDEFL_PUT_BITS( d->m_huff_codes[0][256], d->m_huff_code_sizes[0][256] );
1824
1825                return ( d->m_pOutput_buf < d->m_pOutput_buf_end );
1826        }
1827#else
1828        static mz_bool tdefl_compress_lz_codes( tdefl_compressor *d )
1829        {
1830                mz_uint flags;
1831                mz_uint8 *pLZ_codes;
1832
1833                flags = 1;
1834                for ( pLZ_codes = d->m_lz_code_buf; pLZ_codes < d->m_pLZ_code_buf; flags >>= 1 )
1835                {
1836                        if ( flags == 1 )
1837                                flags = *pLZ_codes++ | 0x100;
1838                        if ( flags & 1 )
1839                        {
1840                                mz_uint sym, num_extra_bits;
1841                                mz_uint match_len = pLZ_codes[0], match_dist = ( pLZ_codes[1] | ( pLZ_codes[2] << 8 ) ); pLZ_codes += 3;
1842
1843                                MZ_ASSERT( d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]] );
1844                                TDEFL_PUT_BITS( d->m_huff_codes[0][s_tdefl_len_sym[match_len]], d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]] );
1845                                TDEFL_PUT_BITS( match_len & mz_bitmasks[s_tdefl_len_extra[match_len]], s_tdefl_len_extra[match_len] );
1846
1847                                if ( match_dist < 512 )
1848                                {
1849                                        sym = s_tdefl_small_dist_sym[match_dist]; num_extra_bits = s_tdefl_small_dist_extra[match_dist];
1850                                }
1851                                else
1852                                {
1853                                        sym = s_tdefl_large_dist_sym[match_dist >> 8]; num_extra_bits = s_tdefl_large_dist_extra[match_dist >> 8];
1854                                }
1855                                MZ_ASSERT( d->m_huff_code_sizes[1][sym] );
1856                                TDEFL_PUT_BITS( d->m_huff_codes[1][sym], d->m_huff_code_sizes[1][sym] );
1857                                TDEFL_PUT_BITS( match_dist & mz_bitmasks[num_extra_bits], num_extra_bits );
1858                        }
1859                        else
1860                        {
1861                                mz_uint lit = *pLZ_codes++;
1862                                MZ_ASSERT( d->m_huff_code_sizes[0][lit] );
1863                                TDEFL_PUT_BITS( d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit] );
1864                        }
1865                }
1866
1867                TDEFL_PUT_BITS( d->m_huff_codes[0][256], d->m_huff_code_sizes[0][256] );
1868
1869                return ( d->m_pOutput_buf < d->m_pOutput_buf_end );
1870        }
1871#endif // MINIZ_USE_UNALIGNED_LOADS_AND_STORES && NV_ENDIANESS == NV_LITTLEENDIAN && NV_ARCHITECTURE == NV_64BIT
1872
1873
1874        static mz_bool tdefl_compress_block( tdefl_compressor *d, mz_bool static_block )
1875        {
1876                if ( static_block )
1877                        tdefl_start_static_block( d );
1878                else
1879                        tdefl_start_dynamic_block( d );
1880                return tdefl_compress_lz_codes( d );
1881        }
1882
1883        static int tdefl_flush_block( tdefl_compressor *d, int flush )
1884        {
1885                mz_uint saved_bit_buf, saved_bits_in;
1886                mz_uint8 *pSaved_output_buf;
1887                mz_bool comp_block_succeeded = MZ_FALSE;
1888                int n, use_raw_block = ( ( d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS ) != 0 ) && ( d->m_lookahead_pos - d->m_lz_code_buf_dict_pos ) <= d->m_dict_size;
1889                mz_uint8 *pOutput_buf_start = ( ( d->m_pPut_buf_func == NULL ) && ( ( *d->m_pOut_buf_size - d->m_out_buf_ofs ) >= TDEFL_OUT_BUF_SIZE ) ) ? ( (mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs ) : d->m_output_buf;
1890
1891                d->m_pOutput_buf = pOutput_buf_start;
1892                d->m_pOutput_buf_end = d->m_pOutput_buf + TDEFL_OUT_BUF_SIZE - 16;
1893
1894                MZ_ASSERT( !d->m_output_flush_remaining );
1895                d->m_output_flush_ofs = 0;
1896                d->m_output_flush_remaining = 0;
1897
1898                *d->m_pLZ_flags = (mz_uint8)( *d->m_pLZ_flags >> d->m_num_flags_left );
1899                d->m_pLZ_code_buf -= ( d->m_num_flags_left == 8 );
1900
1901                if ( ( d->m_flags & TDEFL_WRITE_ZLIB_HEADER ) && ( !d->m_block_index ) )
1902                {
1903                        TDEFL_PUT_BITS( 0x78, 8 ); TDEFL_PUT_BITS( 0x01, 8 );
1904                }
1905
1906                TDEFL_PUT_BITS( flush == TDEFL_FINISH, 1 );
1907
1908                pSaved_output_buf = d->m_pOutput_buf; saved_bit_buf = d->m_bit_buffer; saved_bits_in = d->m_bits_in;
1909
1910                if ( !use_raw_block )
1911                        comp_block_succeeded = tdefl_compress_block( d, ( d->m_flags & TDEFL_FORCE_ALL_STATIC_BLOCKS ) || ( d->m_total_lz_bytes < 48 ) );
1912
1913                // If the block gets expanded, forget the current contents of the output buffer and send a raw block instead.
1914                if ( ( ( use_raw_block ) || ( ( d->m_total_lz_bytes ) && ( ( d->m_pOutput_buf - pSaved_output_buf + 1U ) >= d->m_total_lz_bytes ) ) ) &&
1915                        ( ( d->m_lookahead_pos - d->m_lz_code_buf_dict_pos ) <= d->m_dict_size ) )
1916                {
1917                        mz_uint i; d->m_pOutput_buf = pSaved_output_buf; d->m_bit_buffer = saved_bit_buf, d->m_bits_in = saved_bits_in;
1918                        TDEFL_PUT_BITS( 0, 2 );
1919                        if ( d->m_bits_in ) { TDEFL_PUT_BITS( 0, 8 - d->m_bits_in ); }
1920                        for ( i = 2; i; --i, d->m_total_lz_bytes ^= 0xFFFF )
1921                        {
1922                                TDEFL_PUT_BITS( d->m_total_lz_bytes & 0xFFFF, 16 );
1923                        }
1924                        for ( i = 0; i < d->m_total_lz_bytes; ++i )
1925                        {
1926                                TDEFL_PUT_BITS( d->m_dict[( d->m_lz_code_buf_dict_pos + i ) & TDEFL_LZ_DICT_SIZE_MASK], 8 );
1927                        }
1928                }
1929                // Check for the extremely unlikely (if not impossible) case of the compressed block not fitting into the output buffer when using dynamic codes.
1930                else if ( !comp_block_succeeded )
1931                {
1932                        d->m_pOutput_buf = pSaved_output_buf; d->m_bit_buffer = saved_bit_buf, d->m_bits_in = saved_bits_in;
1933                        tdefl_compress_block( d, MZ_TRUE );
1934                }
1935
1936                if ( flush )
1937                {
1938                        if ( flush == TDEFL_FINISH )
1939                        {
1940                                if ( d->m_bits_in ) { TDEFL_PUT_BITS( 0, 8 - d->m_bits_in ); }
1941                                if ( d->m_flags & TDEFL_WRITE_ZLIB_HEADER ) { mz_uint i, a = d->m_adler32; for ( i = 0; i < 4; i++ ) { TDEFL_PUT_BITS( ( a >> 24 ) & 0xFF, 8 ); a <<= 8; } }
1942                        }
1943                        else
1944                        {
1945                                mz_uint i, z = 0; TDEFL_PUT_BITS( 0, 3 ); if ( d->m_bits_in ) { TDEFL_PUT_BITS( 0, 8 - d->m_bits_in ); } for ( i = 2; i; --i, z ^= 0xFFFF ) { TDEFL_PUT_BITS( z & 0xFFFF, 16 ); }
1946                        }
1947                }
1948
1949                MZ_ASSERT( d->m_pOutput_buf < d->m_pOutput_buf_end );
1950
1951                memset( &d->m_huff_count[0][0], 0, sizeof( d->m_huff_count[0][0] ) * TDEFL_MAX_HUFF_SYMBOLS_0 );
1952                memset( &d->m_huff_count[1][0], 0, sizeof( d->m_huff_count[1][0] ) * TDEFL_MAX_HUFF_SYMBOLS_1 );
1953
1954                d->m_pLZ_code_buf = d->m_lz_code_buf + 1; d->m_pLZ_flags = d->m_lz_code_buf; d->m_num_flags_left = 8; d->m_lz_code_buf_dict_pos += d->m_total_lz_bytes; d->m_total_lz_bytes = 0; d->m_block_index++;
1955
1956                if ( ( n = (int)( d->m_pOutput_buf - pOutput_buf_start ) ) != 0 )
1957                {
1958                        if ( d->m_pPut_buf_func )
1959                        {
1960                                *d->m_pIn_buf_size = d->m_pSrc - (const mz_uint8 *)d->m_pIn_buf;
1961                                if ( !( *d->m_pPut_buf_func )( d->m_output_buf, n, d->m_pPut_buf_user ) )
1962                                        return ( d->m_prev_return_status = TDEFL_STATUS_PUT_BUF_FAILED );
1963                        }
1964                        else if ( pOutput_buf_start == d->m_output_buf )
1965                        {
1966                                int bytes_to_copy = (int)MZ_MIN( (size_t)n, (size_t)( *d->m_pOut_buf_size - d->m_out_buf_ofs ) );
1967                                memcpy( (mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs, d->m_output_buf, bytes_to_copy );
1968                                d->m_out_buf_ofs += bytes_to_copy;
1969                                if ( ( n -= bytes_to_copy ) != 0 )
1970                                {
1971                                        d->m_output_flush_ofs = bytes_to_copy;
1972                                        d->m_output_flush_remaining = n;
1973                                }
1974                        }
1975                        else
1976                        {
1977                                d->m_out_buf_ofs += n;
1978                        }
1979                }
1980
1981                return d->m_output_flush_remaining;
1982        }
1983
1984#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES
1985#define TDEFL_READ_UNALIGNED_WORD(p) *(const mz_uint16*)(p)
1986        static MZ_FORCEINLINE void tdefl_find_match( tdefl_compressor *d, mz_uint lookahead_pos, mz_uint max_dist, mz_uint max_match_len, mz_uint *pMatch_dist, mz_uint *pMatch_len )
1987        {
1988                mz_uint dist, pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK, match_len = *pMatch_len, probe_pos = pos, next_probe_pos, probe_len;
1989                mz_uint num_probes_left = d->m_max_probes[match_len >= 32];
1990                const mz_uint16 *s = (const mz_uint16*)( d->m_dict + pos ), *p, *q;
1991                mz_uint16 c01 = TDEFL_READ_UNALIGNED_WORD( &d->m_dict[pos + match_len - 1] ), s01 = TDEFL_READ_UNALIGNED_WORD( s );
1992                MZ_ASSERT( max_match_len <= TDEFL_MAX_MATCH_LEN ); if ( max_match_len <= match_len ) return;
1993                for ( ; ; )
1994                {
1995                        for ( ; ; )
1996                        {
1997                                if ( --num_probes_left == 0 ) return;
1998#define TDEFL_PROBE \
1999        next_probe_pos = d->m_next[probe_pos]; \
2000        if ((!next_probe_pos) || ((dist = (mz_uint16)(lookahead_pos - next_probe_pos)) > max_dist)) return; \
2001        probe_pos = next_probe_pos & TDEFL_LZ_DICT_SIZE_MASK; \
2002        if (TDEFL_READ_UNALIGNED_WORD(&d->m_dict[probe_pos + match_len - 1]) == c01) break;
2003                                TDEFL_PROBE; TDEFL_PROBE; TDEFL_PROBE;
2004                        }
2005                        if ( !dist ) break; q = (const mz_uint16*)( d->m_dict + probe_pos ); if ( TDEFL_READ_UNALIGNED_WORD( q ) != s01 ) continue; p = s; probe_len = 32;
2006                        do {} while ( ( TDEFL_READ_UNALIGNED_WORD( ++p ) == TDEFL_READ_UNALIGNED_WORD( ++q ) ) && ( TDEFL_READ_UNALIGNED_WORD( ++p ) == TDEFL_READ_UNALIGNED_WORD( ++q ) ) &&
2007                                ( TDEFL_READ_UNALIGNED_WORD( ++p ) == TDEFL_READ_UNALIGNED_WORD( ++q ) ) && ( TDEFL_READ_UNALIGNED_WORD( ++p ) == TDEFL_READ_UNALIGNED_WORD( ++q ) ) && ( --probe_len > 0 ) );
2008                        if ( !probe_len )
2009                        {
2010                                *pMatch_dist = dist; *pMatch_len = MZ_MIN( max_match_len, TDEFL_MAX_MATCH_LEN ); break;
2011                        }
2012                        else if ( ( probe_len = ( (mz_uint)( p - s ) * 2 ) + (mz_uint)( *(const mz_uint8*)p == *(const mz_uint8*)q ) ) > match_len )
2013                        {
2014                                *pMatch_dist = dist; if ( ( *pMatch_len = match_len = MZ_MIN( max_match_len, probe_len ) ) == max_match_len ) break;
2015                                c01 = TDEFL_READ_UNALIGNED_WORD( &d->m_dict[pos + match_len - 1] );
2016                        }
2017                }
2018        }
2019#else
2020        static MZ_FORCEINLINE void tdefl_find_match( tdefl_compressor *d, mz_uint lookahead_pos, mz_uint max_dist, mz_uint max_match_len, mz_uint *pMatch_dist, mz_uint *pMatch_len )
2021        {
2022                mz_uint dist, pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK, match_len = *pMatch_len, probe_pos = pos, next_probe_pos, probe_len;
2023                mz_uint num_probes_left = d->m_max_probes[match_len >= 32];
2024                const mz_uint8 *s = d->m_dict + pos, *p, *q;
2025                mz_uint8 c0 = d->m_dict[pos + match_len], c1 = d->m_dict[pos + match_len - 1];
2026                MZ_ASSERT( max_match_len <= TDEFL_MAX_MATCH_LEN ); if ( max_match_len <= match_len ) return;
2027                for ( ; ; )
2028                {
2029                        for ( ; ; )
2030                        {
2031                                if ( --num_probes_left == 0 ) return;
2032#define TDEFL_PROBE \
2033        next_probe_pos = d->m_next[probe_pos]; \
2034        if ((!next_probe_pos) || ((dist = (mz_uint16)(lookahead_pos - next_probe_pos)) > max_dist)) return; \
2035        probe_pos = next_probe_pos & TDEFL_LZ_DICT_SIZE_MASK; \
2036        if ((d->m_dict[probe_pos + match_len] == c0) && (d->m_dict[probe_pos + match_len - 1] == c1)) break;
2037                                TDEFL_PROBE; TDEFL_PROBE; TDEFL_PROBE;
2038                        }
2039                        if ( !dist ) break; p = s; q = d->m_dict + probe_pos; for ( probe_len = 0; probe_len < max_match_len; probe_len++ ) if ( *p++ != *q++ ) break;
2040                        if ( probe_len > match_len )
2041                        {
2042                                *pMatch_dist = dist; if ( ( *pMatch_len = match_len = probe_len ) == max_match_len ) return;
2043                                c0 = d->m_dict[pos + match_len]; c1 = d->m_dict[pos + match_len - 1];
2044                        }
2045                }
2046        }
2047#endif // #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES
2048
2049#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && NV_ENDIANESS == NV_LITTLEENDIAN
2050        static mz_bool tdefl_compress_fast( tdefl_compressor *d )
2051        {
2052                // Faster, minimally featured LZRW1-style match+parse loop with better register utilization. Intended for applications where raw throughput is valued more highly than ratio.
2053                mz_uint lookahead_pos = d->m_lookahead_pos, lookahead_size = d->m_lookahead_size, dict_size = d->m_dict_size, total_lz_bytes = d->m_total_lz_bytes, num_flags_left = d->m_num_flags_left;
2054                mz_uint8 *pLZ_code_buf = d->m_pLZ_code_buf, *pLZ_flags = d->m_pLZ_flags;
2055                mz_uint cur_pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK;
2056
2057                while ( ( d->m_src_buf_left ) || ( ( d->m_flush ) && ( lookahead_size ) ) )
2058                {
2059                        const mz_uint TDEFL_COMP_FAST_LOOKAHEAD_SIZE = 4096;
2060                        mz_uint dst_pos = ( lookahead_pos + lookahead_size ) & TDEFL_LZ_DICT_SIZE_MASK;
2061                        mz_uint num_bytes_to_process = (mz_uint)MZ_MIN( d->m_src_buf_left, TDEFL_COMP_FAST_LOOKAHEAD_SIZE - lookahead_size );
2062                        d->m_src_buf_left -= num_bytes_to_process;
2063                        lookahead_size += num_bytes_to_process;
2064
2065                        while ( num_bytes_to_process )
2066                        {
2067                                mz_uint32 n = MZ_MIN( TDEFL_LZ_DICT_SIZE - dst_pos, num_bytes_to_process );
2068                                memcpy( d->m_dict + dst_pos, d->m_pSrc, n );
2069                                if ( dst_pos < ( TDEFL_MAX_MATCH_LEN - 1 ) )
2070                                        memcpy( d->m_dict + TDEFL_LZ_DICT_SIZE + dst_pos, d->m_pSrc, MZ_MIN( n, ( TDEFL_MAX_MATCH_LEN - 1 ) - dst_pos ) );
2071                                d->m_pSrc += n;
2072                                dst_pos = ( dst_pos + n ) & TDEFL_LZ_DICT_SIZE_MASK;
2073                                num_bytes_to_process -= n;
2074                        }
2075
2076                        dict_size = MZ_MIN( TDEFL_LZ_DICT_SIZE - lookahead_size, dict_size );
2077                        if ( ( !d->m_flush ) && ( lookahead_size < TDEFL_COMP_FAST_LOOKAHEAD_SIZE ) ) break;
2078
2079                        while ( lookahead_size >= 4 )
2080                        {
2081                                mz_uint cur_match_dist, cur_match_len = 1;
2082                                mz_uint8 *pCur_dict = d->m_dict + cur_pos;
2083                                mz_uint first_trigram = ( *(const mz_uint32 *)pCur_dict ) & 0xFFFFFF;
2084                                mz_uint hash = ( first_trigram ^ ( first_trigram >> ( 24 - ( TDEFL_LZ_HASH_BITS - 8 ) ) ) ) & TDEFL_LEVEL1_HASH_SIZE_MASK;
2085                                mz_uint probe_pos = d->m_hash[hash];
2086                                d->m_hash[hash] = (mz_uint16)lookahead_pos;
2087
2088                                if ( ( ( cur_match_dist = (mz_uint16)( lookahead_pos - probe_pos ) ) <= dict_size ) && ( ( *(const mz_uint32 *)( d->m_dict + ( probe_pos &= TDEFL_LZ_DICT_SIZE_MASK ) ) & 0xFFFFFF ) == first_trigram ) )
2089                                {
2090                                        const mz_uint16 *p = (const mz_uint16 *)pCur_dict;
2091                                        const mz_uint16 *q = (const mz_uint16 *)( d->m_dict + probe_pos );
2092                                        mz_uint32 probe_len = 32;
2093                                        do {} while ( ( TDEFL_READ_UNALIGNED_WORD( ++p ) == TDEFL_READ_UNALIGNED_WORD( ++q ) ) && ( TDEFL_READ_UNALIGNED_WORD( ++p ) == TDEFL_READ_UNALIGNED_WORD( ++q ) ) &&
2094                                                ( TDEFL_READ_UNALIGNED_WORD( ++p ) == TDEFL_READ_UNALIGNED_WORD( ++q ) ) && ( TDEFL_READ_UNALIGNED_WORD( ++p ) == TDEFL_READ_UNALIGNED_WORD( ++q ) ) && ( --probe_len > 0 ) );
2095                                        cur_match_len = ( (mz_uint)( p - (const mz_uint16 *)pCur_dict ) * 2 ) + (mz_uint)( *(const mz_uint8 *)p == *(const mz_uint8 *)q );
2096                                        if ( !probe_len )
2097                                                cur_match_len = cur_match_dist ? TDEFL_MAX_MATCH_LEN : 0;
2098
2099                                        if ( ( cur_match_len < TDEFL_MIN_MATCH_LEN ) || ( ( cur_match_len == TDEFL_MIN_MATCH_LEN ) && ( cur_match_dist >= 8U * 1024U ) ) )
2100                                        {
2101                                                cur_match_len = 1;
2102                                                *pLZ_code_buf++ = (mz_uint8)first_trigram;
2103                                                *pLZ_flags = (mz_uint8)( *pLZ_flags >> 1 );
2104                                                d->m_huff_count[0][(mz_uint8)first_trigram]++;
2105                                        }
2106                                        else
2107                                        {
2108                                                mz_uint32 s0, s1;
2109                                                cur_match_len = MZ_MIN( cur_match_len, lookahead_size );
2110
2111                                                MZ_ASSERT( ( cur_match_len >= TDEFL_MIN_MATCH_LEN ) && ( cur_match_dist >= 1 ) && ( cur_match_dist <= TDEFL_LZ_DICT_SIZE ) );
2112
2113                                                cur_match_dist--;
2114
2115                                                pLZ_code_buf[0] = (mz_uint8)( cur_match_len - TDEFL_MIN_MATCH_LEN );
2116                                                *(mz_uint16 *)( &pLZ_code_buf[1] ) = (mz_uint16)cur_match_dist;
2117                                                pLZ_code_buf += 3;
2118                                                *pLZ_flags = (mz_uint8)( ( *pLZ_flags >> 1 ) | 0x80 );
2119
2120                                                s0 = s_tdefl_small_dist_sym[cur_match_dist & 511];
2121                                                s1 = s_tdefl_large_dist_sym[cur_match_dist >> 8];
2122                                                d->m_huff_count[1][( cur_match_dist < 512 ) ? s0 : s1]++;
2123
2124                                                d->m_huff_count[0][s_tdefl_len_sym[cur_match_len - TDEFL_MIN_MATCH_LEN]]++;
2125                                        }
2126                                }
2127                                else
2128                                {
2129                                        *pLZ_code_buf++ = (mz_uint8)first_trigram;
2130                                        *pLZ_flags = (mz_uint8)( *pLZ_flags >> 1 );
2131                                        d->m_huff_count[0][(mz_uint8)first_trigram]++;
2132                                }
2133
2134                                if ( --num_flags_left == 0 ) { num_flags_left = 8; pLZ_flags = pLZ_code_buf++; }
2135
2136                                total_lz_bytes += cur_match_len;
2137                                lookahead_pos += cur_match_len;
2138                                dict_size = MZ_MIN( dict_size + cur_match_len, TDEFL_LZ_DICT_SIZE );
2139                                cur_pos = ( cur_pos + cur_match_len ) & TDEFL_LZ_DICT_SIZE_MASK;
2140                                MZ_ASSERT( lookahead_size >= cur_match_len );
2141                                lookahead_size -= cur_match_len;
2142
2143                                if ( pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8] )
2144                                {
2145                                        int n;
2146                                        d->m_lookahead_pos = lookahead_pos; d->m_lookahead_size = lookahead_size; d->m_dict_size = dict_size;
2147                                        d->m_total_lz_bytes = total_lz_bytes; d->m_pLZ_code_buf = pLZ_code_buf; d->m_pLZ_flags = pLZ_flags; d->m_num_flags_left = num_flags_left;
2148                                        if ( ( n = tdefl_flush_block( d, 0 ) ) != 0 )
2149                                                return ( n < 0 ) ? MZ_FALSE : MZ_TRUE;
2150                                        total_lz_bytes = d->m_total_lz_bytes; pLZ_code_buf = d->m_pLZ_code_buf; pLZ_flags = d->m_pLZ_flags; num_flags_left = d->m_num_flags_left;
2151                                }
2152                        }
2153
2154                        while ( lookahead_size )
2155                        {
2156                                mz_uint8 lit = d->m_dict[cur_pos];
2157
2158                                total_lz_bytes++;
2159                                *pLZ_code_buf++ = lit;
2160                                *pLZ_flags = (mz_uint8)( *pLZ_flags >> 1 );
2161                                if ( --num_flags_left == 0 ) { num_flags_left = 8; pLZ_flags = pLZ_code_buf++; }
2162
2163                                d->m_huff_count[0][lit]++;
2164
2165                                lookahead_pos++;
2166                                dict_size = MZ_MIN( dict_size + 1, TDEFL_LZ_DICT_SIZE );
2167                                cur_pos = ( cur_pos + 1 ) & TDEFL_LZ_DICT_SIZE_MASK;
2168                                lookahead_size--;
2169
2170                                if ( pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8] )
2171                                {
2172                                        int n;
2173                                        d->m_lookahead_pos = lookahead_pos; d->m_lookahead_size = lookahead_size; d->m_dict_size = dict_size;
2174                                        d->m_total_lz_bytes = total_lz_bytes; d->m_pLZ_code_buf = pLZ_code_buf; d->m_pLZ_flags = pLZ_flags; d->m_num_flags_left = num_flags_left;
2175                                        if ( ( n = tdefl_flush_block( d, 0 ) ) != 0 )
2176                                                return ( n < 0 ) ? MZ_FALSE : MZ_TRUE;
2177                                        total_lz_bytes = d->m_total_lz_bytes; pLZ_code_buf = d->m_pLZ_code_buf; pLZ_flags = d->m_pLZ_flags; num_flags_left = d->m_num_flags_left;
2178                                }
2179                        }
2180                }
2181
2182                d->m_lookahead_pos = lookahead_pos; d->m_lookahead_size = lookahead_size; d->m_dict_size = dict_size;
2183                d->m_total_lz_bytes = total_lz_bytes; d->m_pLZ_code_buf = pLZ_code_buf; d->m_pLZ_flags = pLZ_flags; d->m_num_flags_left = num_flags_left;
2184                return MZ_TRUE;
2185        }
2186#endif // MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
2187
2188        static MZ_FORCEINLINE void tdefl_record_literal( tdefl_compressor *d, mz_uint8 lit )
2189        {
2190                d->m_total_lz_bytes++;
2191                *d->m_pLZ_code_buf++ = lit;
2192                *d->m_pLZ_flags = (mz_uint8)( *d->m_pLZ_flags >> 1 ); if ( --d->m_num_flags_left == 0 ) { d->m_num_flags_left = 8; d->m_pLZ_flags = d->m_pLZ_code_buf++; }
2193                d->m_huff_count[0][lit]++;
2194        }
2195
2196        static MZ_FORCEINLINE void tdefl_record_match( tdefl_compressor *d, mz_uint match_len, mz_uint match_dist )
2197        {
2198                mz_uint32 s0, s1;
2199
2200                MZ_ASSERT( ( match_len >= TDEFL_MIN_MATCH_LEN ) && ( match_dist >= 1 ) && ( match_dist <= TDEFL_LZ_DICT_SIZE ) );
2201
2202                d->m_total_lz_bytes += match_len;
2203
2204                d->m_pLZ_code_buf[0] = (mz_uint8)( match_len - TDEFL_MIN_MATCH_LEN );
2205
2206                match_dist -= 1;
2207                d->m_pLZ_code_buf[1] = (mz_uint8)( match_dist & 0xFF );
2208                d->m_pLZ_code_buf[2] = (mz_uint8)( match_dist >> 8 ); d->m_pLZ_code_buf += 3;
2209
2210                *d->m_pLZ_flags = (mz_uint8)( ( *d->m_pLZ_flags >> 1 ) | 0x80 ); if ( --d->m_num_flags_left == 0 ) { d->m_num_flags_left = 8; d->m_pLZ_flags = d->m_pLZ_code_buf++; }
2211
2212                s0 = s_tdefl_small_dist_sym[match_dist & 511]; s1 = s_tdefl_large_dist_sym[( match_dist >> 8 ) & 127];
2213                d->m_huff_count[1][( match_dist < 512 ) ? s0 : s1]++;
2214
2215                if ( match_len >= TDEFL_MIN_MATCH_LEN ) d->m_huff_count[0][s_tdefl_len_sym[match_len - TDEFL_MIN_MATCH_LEN]]++;
2216        }
2217
2218        static mz_bool tdefl_compress_normal( tdefl_compressor *d )
2219        {
2220                const mz_uint8 *pSrc = d->m_pSrc; size_t src_buf_left = d->m_src_buf_left;
2221                tdefl_flush flush = d->m_flush;
2222
2223                while ( ( src_buf_left ) || ( ( flush ) && ( d->m_lookahead_size ) ) )
2224                {
2225                        mz_uint len_to_move, cur_match_dist, cur_match_len, cur_pos;
2226                        // Update dictionary and hash chains. Keeps the lookahead size equal to TDEFL_MAX_MATCH_LEN.
2227                        if ( ( d->m_lookahead_size + d->m_dict_size ) >= ( TDEFL_MIN_MATCH_LEN - 1 ) )
2228                        {
2229                                mz_uint dst_pos = ( d->m_lookahead_pos + d->m_lookahead_size ) & TDEFL_LZ_DICT_SIZE_MASK, ins_pos = d->m_lookahead_pos + d->m_lookahead_size - 2;
2230                                mz_uint hash = ( d->m_dict[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] << TDEFL_LZ_HASH_SHIFT ) ^ d->m_dict[( ins_pos + 1 ) & TDEFL_LZ_DICT_SIZE_MASK];
2231                                mz_uint num_bytes_to_process = (mz_uint)MZ_MIN( src_buf_left, TDEFL_MAX_MATCH_LEN - d->m_lookahead_size );
2232                                const mz_uint8 *pSrc_end = pSrc + num_bytes_to_process;
2233                                src_buf_left -= num_bytes_to_process;
2234                                d->m_lookahead_size += num_bytes_to_process;
2235                                while ( pSrc != pSrc_end )
2236                                {
2237                                        mz_uint8 c = *pSrc++; d->m_dict[dst_pos] = c; if ( dst_pos < ( TDEFL_MAX_MATCH_LEN - 1 ) ) d->m_dict[TDEFL_LZ_DICT_SIZE + dst_pos] = c;
2238                                        hash = ( ( hash << TDEFL_LZ_HASH_SHIFT ) ^ c ) & ( TDEFL_LZ_HASH_SIZE - 1 );
2239                                        d->m_next[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] = d->m_hash[hash]; d->m_hash[hash] = (mz_uint16)( ins_pos );
2240                                        dst_pos = ( dst_pos + 1 ) & TDEFL_LZ_DICT_SIZE_MASK; ins_pos++;
2241                                }
2242                        }
2243                        else
2244                        {
2245                                while ( ( src_buf_left ) && ( d->m_lookahead_size < TDEFL_MAX_MATCH_LEN ) )
2246                                {
2247                                        mz_uint8 c = *pSrc++;
2248                                        mz_uint dst_pos = ( d->m_lookahead_pos + d->m_lookahead_size ) & TDEFL_LZ_DICT_SIZE_MASK;
2249                                        src_buf_left--;
2250                                        d->m_dict[dst_pos] = c;
2251                                        if ( dst_pos < ( TDEFL_MAX_MATCH_LEN - 1 ) )
2252                                                d->m_dict[TDEFL_LZ_DICT_SIZE + dst_pos] = c;
2253                                        if ( ( ++d->m_lookahead_size + d->m_dict_size ) >= TDEFL_MIN_MATCH_LEN )
2254                                        {
2255                                                mz_uint ins_pos = d->m_lookahead_pos + ( d->m_lookahead_size - 1 ) - 2;
2256                                                mz_uint hash = ( ( d->m_dict[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] << ( TDEFL_LZ_HASH_SHIFT * 2 ) ) ^ ( d->m_dict[( ins_pos + 1 ) & TDEFL_LZ_DICT_SIZE_MASK] << TDEFL_LZ_HASH_SHIFT ) ^ c ) & ( TDEFL_LZ_HASH_SIZE - 1 );
2257                                                d->m_next[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] = d->m_hash[hash]; d->m_hash[hash] = (mz_uint16)( ins_pos );
2258                                        }
2259                                }
2260                        }
2261                        d->m_dict_size = MZ_MIN( TDEFL_LZ_DICT_SIZE - d->m_lookahead_size, d->m_dict_size );
2262                        if ( ( !flush ) && ( d->m_lookahead_size < TDEFL_MAX_MATCH_LEN ) )
2263                                break;
2264
2265                        // Simple lazy/greedy parsing state machine.
2266                        len_to_move = 1; cur_match_dist = 0; cur_match_len = d->m_saved_match_len ? d->m_saved_match_len : ( TDEFL_MIN_MATCH_LEN - 1 ); cur_pos = d->m_lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK;
2267                        if ( d->m_flags & ( TDEFL_RLE_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS ) )
2268                        {
2269                                if ( ( d->m_dict_size ) && ( !( d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS ) ) )
2270                                {
2271                                        mz_uint8 c = d->m_dict[( cur_pos - 1 ) & TDEFL_LZ_DICT_SIZE_MASK];
2272                                        cur_match_len = 0; while ( cur_match_len < d->m_lookahead_size ) { if ( d->m_dict[cur_pos + cur_match_len] != c ) break; cur_match_len++; }
2273                                        if ( cur_match_len < TDEFL_MIN_MATCH_LEN ) cur_match_len = 0; else cur_match_dist = 1;
2274                                }
2275                        }
2276                        else
2277                        {
2278                                tdefl_find_match( d, d->m_lookahead_pos, d->m_dict_size, d->m_lookahead_size, &cur_match_dist, &cur_match_len );
2279                        }
2280                        if ( ( ( cur_match_len == TDEFL_MIN_MATCH_LEN ) && ( cur_match_dist >= 8U * 1024U ) ) || ( cur_pos == cur_match_dist ) || ( ( d->m_flags & TDEFL_FILTER_MATCHES ) && ( cur_match_len <= 5 ) ) )
2281                        {
2282                                cur_match_dist = cur_match_len = 0;
2283                        }
2284                        if ( d->m_saved_match_len )
2285                        {
2286                                if ( cur_match_len > d->m_saved_match_len )
2287                                {
2288                                        tdefl_record_literal( d, (mz_uint8)d->m_saved_lit );
2289                                        if ( cur_match_len >= 128 )
2290                                        {
2291                                                tdefl_record_match( d, cur_match_len, cur_match_dist );
2292                                                d->m_saved_match_len = 0; len_to_move = cur_match_len;
2293                                        }
2294                                        else
2295                                        {
2296                                                d->m_saved_lit = d->m_dict[cur_pos]; d->m_saved_match_dist = cur_match_dist; d->m_saved_match_len = cur_match_len;
2297                                        }
2298                                }
2299                                else
2300                                {
2301                                        tdefl_record_match( d, d->m_saved_match_len, d->m_saved_match_dist );
2302                                        len_to_move = d->m_saved_match_len - 1; d->m_saved_match_len = 0;
2303                                }
2304                        }
2305                        else if ( !cur_match_dist )
2306                                tdefl_record_literal( d, d->m_dict[MZ_MIN( cur_pos, sizeof( d->m_dict ) - 1 )] );
2307                        else if ( ( d->m_greedy_parsing ) || ( d->m_flags & TDEFL_RLE_MATCHES ) || ( cur_match_len >= 128 ) )
2308                        {
2309                                tdefl_record_match( d, cur_match_len, cur_match_dist );
2310                                len_to_move = cur_match_len;
2311                        }
2312                        else
2313                        {
2314                                d->m_saved_lit = d->m_dict[MZ_MIN( cur_pos, sizeof( d->m_dict ) - 1 )]; d->m_saved_match_dist = cur_match_dist; d->m_saved_match_len = cur_match_len;
2315                        }
2316                        // Move the lookahead forward by len_to_move bytes.
2317                        d->m_lookahead_pos += len_to_move;
2318                        MZ_ASSERT( d->m_lookahead_size >= len_to_move );
2319                        d->m_lookahead_size -= len_to_move;
2320                        d->m_dict_size = MZ_MIN( d->m_dict_size + len_to_move, TDEFL_LZ_DICT_SIZE );
2321                        // Check if it's time to flush the current LZ codes to the internal output buffer.
2322                        if ( ( d->m_pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8] ) ||
2323                                ( ( d->m_total_lz_bytes > 31 * 1024 ) && ( ( ( ( (mz_uint)( d->m_pLZ_code_buf - d->m_lz_code_buf ) * 115 ) >> 7 ) >= d->m_total_lz_bytes ) || ( d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS ) ) ) )
2324                        {
2325                                int n;
2326                                d->m_pSrc = pSrc; d->m_src_buf_left = src_buf_left;
2327                                if ( ( n = tdefl_flush_block( d, 0 ) ) != 0 )
2328                                        return ( n < 0 ) ? MZ_FALSE : MZ_TRUE;
2329                        }
2330                }
2331
2332                d->m_pSrc = pSrc; d->m_src_buf_left = src_buf_left;
2333                return MZ_TRUE;
2334        }
2335
2336        static tdefl_status tdefl_flush_output_buffer( tdefl_compressor *d )
2337        {
2338                if ( d->m_pIn_buf_size )
2339                {
2340                        *d->m_pIn_buf_size = d->m_pSrc - (const mz_uint8 *)d->m_pIn_buf;
2341                }
2342
2343                if ( d->m_pOut_buf_size )
2344                {
2345                        size_t n = MZ_MIN( *d->m_pOut_buf_size - d->m_out_buf_ofs, d->m_output_flush_remaining );
2346                        memcpy( (mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs, d->m_output_buf + d->m_output_flush_ofs, n );
2347                        d->m_output_flush_ofs += (mz_uint)n;
2348                        d->m_output_flush_remaining -= (mz_uint)n;
2349                        d->m_out_buf_ofs += n;
2350
2351                        *d->m_pOut_buf_size = d->m_out_buf_ofs;
2352                }
2353
2354                return ( d->m_finished && !d->m_output_flush_remaining ) ? TDEFL_STATUS_DONE : TDEFL_STATUS_OKAY;
2355        }
2356
2357        tdefl_status tdefl_compress( tdefl_compressor *d, const void *pIn_buf, size_t *pIn_buf_size, void *pOut_buf, size_t *pOut_buf_size, tdefl_flush flush )
2358        {
2359                if ( !d )
2360                {
2361                        if ( pIn_buf_size ) *pIn_buf_size = 0;
2362                        if ( pOut_buf_size ) *pOut_buf_size = 0;
2363                        return TDEFL_STATUS_BAD_PARAM;
2364                }
2365
2366                d->m_pIn_buf = pIn_buf; d->m_pIn_buf_size = pIn_buf_size;
2367                d->m_pOut_buf = pOut_buf; d->m_pOut_buf_size = pOut_buf_size;
2368                d->m_pSrc = (const mz_uint8 *)( pIn_buf ); d->m_src_buf_left = pIn_buf_size ? *pIn_buf_size : 0;
2369                d->m_out_buf_ofs = 0;
2370                d->m_flush = flush;
2371
2372                if ( ( ( d->m_pPut_buf_func != NULL ) == ( ( pOut_buf != NULL ) || ( pOut_buf_size != NULL ) ) ) || ( d->m_prev_return_status != TDEFL_STATUS_OKAY ) ||
2373                        ( d->m_wants_to_finish && ( flush != TDEFL_FINISH ) ) || ( pIn_buf_size && *pIn_buf_size && !pIn_buf ) || ( pOut_buf_size && *pOut_buf_size && !pOut_buf ) )
2374                {
2375                        if ( pIn_buf_size ) *pIn_buf_size = 0;
2376                        if ( pOut_buf_size ) *pOut_buf_size = 0;
2377                        return ( d->m_prev_return_status = TDEFL_STATUS_BAD_PARAM );
2378                }
2379                d->m_wants_to_finish |= ( flush == TDEFL_FINISH );
2380
2381                if ( ( d->m_output_flush_remaining ) || ( d->m_finished ) )
2382                        return ( d->m_prev_return_status = tdefl_flush_output_buffer( d ) );
2383
2384#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && NV_ENDIANESS == NV_LITTLEENDIAN
2385                if ( ( ( d->m_flags & TDEFL_MAX_PROBES_MASK ) == 1 ) &&
2386                        ( ( d->m_flags & TDEFL_GREEDY_PARSING_FLAG ) != 0 ) &&
2387                        ( ( d->m_flags & ( TDEFL_FILTER_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS | TDEFL_RLE_MATCHES ) ) == 0 ) )
2388                {
2389                        if ( !tdefl_compress_fast( d ) )
2390                                return d->m_prev_return_status;
2391                }
2392                else
2393#endif // #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && NV_ENDIANESS == NV_LITTLEENDIAN
2394                {
2395                        if ( !tdefl_compress_normal( d ) )
2396                                return d->m_prev_return_status;
2397                }
2398
2399                if ( ( d->m_flags & ( TDEFL_WRITE_ZLIB_HEADER | TDEFL_COMPUTE_ADLER32 ) ) && ( pIn_buf ) )
2400                        d->m_adler32 = (mz_uint32)mz_adler32( d->m_adler32, (const mz_uint8 *)pIn_buf, d->m_pSrc - (const mz_uint8 *)pIn_buf );
2401
2402                if ( ( flush ) && ( !d->m_lookahead_size ) && ( !d->m_src_buf_left ) && ( !d->m_output_flush_remaining ) )
2403                {
2404                        if ( tdefl_flush_block( d, flush ) < 0 )
2405                                return d->m_prev_return_status;
2406                        d->m_finished = ( flush == TDEFL_FINISH );
2407                        if ( flush == TDEFL_FULL_FLUSH ) { MZ_CLEAR_OBJ( d->m_hash ); MZ_CLEAR_OBJ( d->m_next ); d->m_dict_size = 0; }
2408                }
2409
2410                return ( d->m_prev_return_status = tdefl_flush_output_buffer( d ) );
2411        }
2412
2413        tdefl_status tdefl_compress_buffer( tdefl_compressor *d, const void *pIn_buf, size_t in_buf_size, tdefl_flush flush )
2414        {
2415                MZ_ASSERT( d->m_pPut_buf_func ); return tdefl_compress( d, pIn_buf, &in_buf_size, NULL, NULL, flush );
2416        }
2417
2418        tdefl_status tdefl_init( tdefl_compressor *d, tdefl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags )
2419        {
2420                d->m_pPut_buf_func = pPut_buf_func; d->m_pPut_buf_user = pPut_buf_user;
2421                d->m_flags = (mz_uint)( flags ); d->m_max_probes[0] = 1 + ( ( flags & 0xFFF ) + 2 ) / 3; d->m_greedy_parsing = ( flags & TDEFL_GREEDY_PARSING_FLAG ) != 0;
2422                d->m_max_probes[1] = 1 + ( ( ( flags & 0xFFF ) >> 2 ) + 2 ) / 3;
2423                if ( !( flags & TDEFL_NONDETERMINISTIC_PARSING_FLAG ) ) MZ_CLEAR_OBJ( d->m_hash );
2424                d->m_lookahead_pos = d->m_lookahead_size = d->m_dict_size = d->m_total_lz_bytes = d->m_lz_code_buf_dict_pos = d->m_bits_in = 0;
2425                d->m_output_flush_ofs = d->m_output_flush_remaining = d->m_finished = d->m_block_index = d->m_bit_buffer = d->m_wants_to_finish = 0;
2426                d->m_pLZ_code_buf = d->m_lz_code_buf + 1; d->m_pLZ_flags = d->m_lz_code_buf; d->m_num_flags_left = 8;
2427                d->m_pOutput_buf = d->m_output_buf; d->m_pOutput_buf_end = d->m_output_buf; d->m_prev_return_status = TDEFL_STATUS_OKAY;
2428                d->m_saved_match_dist = d->m_saved_match_len = d->m_saved_lit = 0; d->m_adler32 = 1;
2429                d->m_pIn_buf = NULL; d->m_pOut_buf = NULL;
2430                d->m_pIn_buf_size = NULL; d->m_pOut_buf_size = NULL;
2431                d->m_flush = TDEFL_NO_FLUSH; d->m_pSrc = NULL; d->m_src_buf_left = 0; d->m_out_buf_ofs = 0;
2432                memset( &d->m_huff_count[0][0], 0, sizeof( d->m_huff_count[0][0] ) * TDEFL_MAX_HUFF_SYMBOLS_0 );
2433                memset( &d->m_huff_count[1][0], 0, sizeof( d->m_huff_count[1][0] ) * TDEFL_MAX_HUFF_SYMBOLS_1 );
2434                return TDEFL_STATUS_OKAY;
2435        }
2436
2437        tdefl_status tdefl_get_prev_return_status( tdefl_compressor *d )
2438        {
2439                return d->m_prev_return_status;
2440        }
2441
2442        mz_uint32 tdefl_get_adler32( tdefl_compressor *d )
2443        {
2444                return d->m_adler32;
2445        }
2446
2447        mz_bool tdefl_compress_mem_to_output( const void *pBuf, size_t buf_len, tdefl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags )
2448        {
2449                tdefl_compressor *pComp; mz_bool succeeded; if ( ( ( buf_len ) && ( !pBuf ) ) || ( !pPut_buf_func ) ) return MZ_FALSE;
2450                pComp = (tdefl_compressor*)MZ_MALLOC( sizeof( tdefl_compressor ) ); if ( !pComp ) return MZ_FALSE;
2451                succeeded = ( tdefl_init( pComp, pPut_buf_func, pPut_buf_user, flags ) == TDEFL_STATUS_OKAY );
2452                succeeded = succeeded && ( tdefl_compress_buffer( pComp, pBuf, buf_len, TDEFL_FINISH ) == TDEFL_STATUS_DONE );
2453                MZ_FREE( pComp ); return succeeded;
2454        }
2455
2456        typedef struct
2457        {
2458                size_t m_size, m_capacity;
2459                mz_uint8 *m_pBuf;
2460                mz_bool m_expandable;
2461        } tdefl_output_buffer;
2462
2463        static mz_bool tdefl_output_buffer_putter( const void *pBuf, int len, void *pUser )
2464        {
2465                tdefl_output_buffer *p = (tdefl_output_buffer *)pUser;
2466                size_t new_size = p->m_size + len;
2467                if ( new_size > p->m_capacity )
2468                {
2469                        size_t new_capacity = p->m_capacity; mz_uint8 *pNew_buf; if ( !p->m_expandable ) return MZ_FALSE;
2470                        do { new_capacity = MZ_MAX( 128U, new_capacity << 1U ); } while ( new_size > new_capacity );
2471                        pNew_buf = (mz_uint8*)MZ_REALLOC( p->m_pBuf, new_capacity ); if ( !pNew_buf ) return MZ_FALSE;
2472                        p->m_pBuf = pNew_buf; p->m_capacity = new_capacity;
2473                }
2474                memcpy( (mz_uint8*)p->m_pBuf + p->m_size, pBuf, len ); p->m_size = new_size;
2475                return MZ_TRUE;
2476        }
2477
2478        void *tdefl_compress_mem_to_heap( const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags )
2479        {
2480                tdefl_output_buffer out_buf; MZ_CLEAR_OBJ( out_buf );
2481                if ( !pOut_len ) return MZ_FALSE; else *pOut_len = 0;
2482                out_buf.m_expandable = MZ_TRUE;
2483                if ( !tdefl_compress_mem_to_output( pSrc_buf, src_buf_len, tdefl_output_buffer_putter, &out_buf, flags ) ) return NULL;
2484                *pOut_len = out_buf.m_size; return out_buf.m_pBuf;
2485        }
2486
2487        size_t tdefl_compress_mem_to_mem( void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags )
2488        {
2489                tdefl_output_buffer out_buf; MZ_CLEAR_OBJ( out_buf );
2490                if ( !pOut_buf ) return 0;
2491                out_buf.m_pBuf = (mz_uint8*)pOut_buf; out_buf.m_capacity = out_buf_len;
2492                if ( !tdefl_compress_mem_to_output( pSrc_buf, src_buf_len, tdefl_output_buffer_putter, &out_buf, flags ) ) return 0;
2493                return out_buf.m_size;
2494        }
2495
2496#ifndef MINIZ_NO_ZLIB_APIS
2497        static const mz_uint s_tdefl_num_probes[11] = { 0, 1, 6, 32,  16, 32, 128, 256,  512, 768, 1500 };
2498
2499        // level may actually range from [0,10] (10 is a "hidden" max level, where we want a bit more compression and it's fine if throughput to fall off a cliff on some files).
2500        mz_uint tdefl_create_comp_flags_from_zip_params( int level, int window_bits, int strategy )
2501        {
2502                mz_uint comp_flags = s_tdefl_num_probes[( level >= 0 ) ? MZ_MIN( 10, level ) : MZ_DEFAULT_LEVEL] | ( ( level <= 3 ) ? TDEFL_GREEDY_PARSING_FLAG : 0 );
2503                if ( window_bits > 0 ) comp_flags |= TDEFL_WRITE_ZLIB_HEADER;
2504
2505                if ( !level ) comp_flags |= TDEFL_FORCE_ALL_RAW_BLOCKS;
2506                else if ( strategy == MZ_FILTERED ) comp_flags |= TDEFL_FILTER_MATCHES;
2507                else if ( strategy == MZ_HUFFMAN_ONLY ) comp_flags &= ~TDEFL_MAX_PROBES_MASK;
2508                else if ( strategy == MZ_FIXED ) comp_flags |= TDEFL_FORCE_ALL_STATIC_BLOCKS;
2509                else if ( strategy == MZ_RLE ) comp_flags |= TDEFL_RLE_MATCHES;
2510
2511                return comp_flags;
2512        }
2513#endif //MINIZ_NO_ZLIB_APIS
2514
2515#ifdef _MSC_VER
2516#pragma warning (push)
2517#pragma warning (disable:4204) // nonstandard extension used : non-constant aggregate initializer (also supported by GNU C and C99, so no big deal)
2518#endif
2519
2520        // Simple PNG writer function by Alex Evans, 2011. Released into the public domain: https://gist.github.com/908299, more context at
2521        // http://altdevblogaday.org/2011/04/06/a-smaller-jpg-encoder/.
2522        // This is actually a modification of Alex's original code so PNG files generated by this function pass pngcheck.
2523        void *tdefl_write_image_to_png_file_in_memory_ex( const void *pImage, int w, int h, int num_chans, size_t *pLen_out, mz_uint level, mz_bool flip )
2524        {
2525                // Using a local copy of this array here in case MINIZ_NO_ZLIB_APIS was defined.
2526                static const mz_uint s_tdefl_png_num_probes[11] = { 0, 1, 6, 32,  16, 32, 128, 256,  512, 768, 1500 };
2527                tdefl_compressor *pComp = (tdefl_compressor *)MZ_MALLOC( sizeof( tdefl_compressor ) ); tdefl_output_buffer out_buf; int i, bpl = w * num_chans, y, z; mz_uint32 c; *pLen_out = 0;
2528                if ( !pComp ) return NULL;
2529                MZ_CLEAR_OBJ( out_buf ); out_buf.m_expandable = MZ_TRUE; out_buf.m_capacity = 57 + MZ_MAX( 64, ( 1 + bpl )*h ); if ( NULL == ( out_buf.m_pBuf = (mz_uint8*)MZ_MALLOC( out_buf.m_capacity ) ) ) { MZ_FREE( pComp ); return NULL; }
2530                // write dummy header
2531                for ( z = 41; z; --z ) tdefl_output_buffer_putter( &z, 1, &out_buf );
2532                // compress image data
2533                tdefl_init( pComp, tdefl_output_buffer_putter, &out_buf, s_tdefl_png_num_probes[MZ_MIN( 10, level )] | TDEFL_WRITE_ZLIB_HEADER );
2534                for ( y = 0; y < h; ++y ) { tdefl_compress_buffer( pComp, &z, 1, TDEFL_NO_FLUSH ); tdefl_compress_buffer( pComp, (mz_uint8*)pImage + ( flip ? ( h - 1 - y ) : y ) * bpl, bpl, TDEFL_NO_FLUSH ); }
2535                if ( tdefl_compress_buffer( pComp, NULL, 0, TDEFL_FINISH ) != TDEFL_STATUS_DONE ) { MZ_FREE( pComp ); MZ_FREE( out_buf.m_pBuf ); return NULL; }
2536                // write real header
2537                *pLen_out = out_buf.m_size - 41;
2538                {
2539                        static const mz_uint8 chans[] = { 0x00, 0x00, 0x04, 0x02, 0x06 };
2540                        mz_uint8 pnghdr[41] = { 0x89,0x50,0x4e,0x47,0x0d,0x0a,0x1a,0x0a,0x00,0x00,0x00,0x0d,0x49,0x48,0x44,0x52,
2541                                0,0,(mz_uint8)( w >> 8 ),(mz_uint8)w,0,0,(mz_uint8)( h >> 8 ),(mz_uint8)h,8,chans[num_chans],0,0,0,0,0,0,0,
2542                                (mz_uint8)( *pLen_out >> 24 ),(mz_uint8)( *pLen_out >> 16 ),(mz_uint8)( *pLen_out >> 8 ),(mz_uint8)*pLen_out,0x49,0x44,0x41,0x54 };
2543                        c = (mz_uint32)mz_crc32( MZ_CRC32_INIT, pnghdr + 12, 17 ); for ( i = 0; i < 4; ++i, c <<= 8 ) ( (mz_uint8*)( pnghdr + 29 ) )[i] = (mz_uint8)( c >> 24 );
2544                        memcpy( out_buf.m_pBuf, pnghdr, 41 );
2545                }
2546                // write footer (IDAT CRC-32, followed by IEND chunk)
2547                if ( !tdefl_output_buffer_putter( "\0\0\0\0\0\0\0\0\x49\x45\x4e\x44\xae\x42\x60\x82", 16, &out_buf ) ) { *pLen_out = 0; MZ_FREE( pComp ); MZ_FREE( out_buf.m_pBuf ); return NULL; }
2548                c = (mz_uint32)mz_crc32( MZ_CRC32_INIT, out_buf.m_pBuf + 41 - 4, *pLen_out + 4 ); for ( i = 0; i < 4; ++i, c <<= 8 ) ( out_buf.m_pBuf + out_buf.m_size - 16 )[i] = (mz_uint8)( c >> 24 );
2549                // compute final size of file, grab compressed data buffer and return
2550                *pLen_out += 57; MZ_FREE( pComp ); return out_buf.m_pBuf;
2551        }
2552        void *tdefl_write_image_to_png_file_in_memory( const void *pImage, int w, int h, int num_chans, size_t *pLen_out )
2553        {
2554                // Level 6 corresponds to TDEFL_DEFAULT_MAX_PROBES or MZ_DEFAULT_LEVEL (but we can't depend on MZ_DEFAULT_LEVEL being available in case the zlib API's where #defined out)
2555                return tdefl_write_image_to_png_file_in_memory_ex( pImage, w, h, num_chans, pLen_out, 6, MZ_FALSE );
2556        }
2557
2558#ifdef _MSC_VER
2559#pragma warning (pop)
2560#endif
2561
2562
2563#ifdef __cplusplus
2564}
2565#endif
2566
2567void * nv::miniz_decompress( const void *source_buf, size_t source_buf_len, size_t *out_len, bool parse_header )
2568{
2569        NV_PROFILE( "decompress" );
2570        return tinfl_decompress_mem_to_heap( source_buf, source_buf_len, out_len, parse_header ? TINFL_FLAG_PARSE_ZLIB_HEADER : 0 );
2571}
2572
2573int nv::miniz_compress( unsigned char *pDest, unsigned long *pDest_len, const unsigned char *pSource, unsigned long source_len, int level )
2574{
2575        NV_PROFILE( "compress" );
2576        return mz_compress2( pDest, pDest_len, pSource, source_len, level );
2577}
2578
2579unsigned long nv::miniz_bound( unsigned long source_len )
2580{
2581        return mz_compressBound( source_len );
2582}
Note: See TracBrowser for help on using the repository browser.