// Copyright (C) 2012-2015 ChaosForge Ltd // http://chaosforge.org/ // // This file is part of Nova libraries. // For conditions of distribution and use, see copying.txt file in root folder. #include "nv/gfx/mesh_creator.hh" struct nv_key_transform { nv::transform tform; }; void nv::mesh_nodes_creator::pre_transform_keys() { if ( m_data->m_flat ) return; merge_keys(); uint32 max_frames = 0; for ( size_t i = 0; i < m_data->get_count(); ++i ) { sint16 parent_id = m_data->m_nodes[i].parent_id; key_data* keys = m_data->m_nodes[i].data; key_data* pkeys = ( parent_id != -1 ? m_data->m_nodes[parent_id].data : nullptr ); size_t count = ( keys ? keys->get_channel(0)->element_count() : 0 ); size_t pcount = ( pkeys ? pkeys->get_channel(0)->element_count() : 0 ); max_frames = nv::max( count, max_frames ); if ( pkeys && pkeys->get_channel_count() > 0 && keys && keys->get_channel_count() > 0 ) { nv_key_transform* channel = reinterpret_cast(keys->get_channel(0)->data); nv_key_transform* pchannel = reinterpret_cast(pkeys->get_channel(0)->data); for ( unsigned n = 0; n < count; ++n ) { channel[n].tform = pchannel[ nv::min( n, pcount-1 ) ].tform * channel[n].tform; } } } // DAE pre_transform hack if ( m_data->m_frame_rate == 1 ) { m_data->m_frame_rate = 32; m_data->m_duration = static_cast( max_frames ); } m_data->m_flat = true; } // TODO: DELETE struct assimp_key_p { float time; nv::vec3 position; }; struct assimp_key_r { float time; nv::quat rotation; }; void nv::mesh_nodes_creator::merge_keys() { for ( size_t i = 0; i < m_data->get_count(); ++i ) { key_data* old_keys = m_data->m_nodes[i].data; if ( old_keys && old_keys->get_channel_count() > 0 ) { size_t chan_count = old_keys->get_channel_count(); if ( chan_count == 1 && old_keys->get_channel(0)->desc.slot_count() == 1 && old_keys->get_channel(0)->desc[0].etype == TRANSFORM ) continue; size_t max_keys = 0; for ( size_t c = 0; c < chan_count; ++c ) { max_keys = nv::max( max_keys, old_keys->get_channel(c)->count ); } raw_data_channel* raw_channel = raw_data_channel::create( max_keys ); key_data* new_keys = new key_data; new_keys->add_channel( raw_channel ); nv_key_transform* channel = reinterpret_cast(raw_channel->data); data_descriptor final_key = old_keys->get_final_key(); for ( unsigned n = 0; n < max_keys; ++n ) { float key[ 16 ]; float* pkey = key; for ( uint16 c = 0; c < chan_count; ++c ) { size_t idx = nv::min( old_keys->get_channel(c)->count - 1, n ); pkey += old_keys->get_raw( old_keys->get_channel(c), idx, pkey ); } channel[n].tform = extract_transform_raw( final_key, key ); } delete old_keys; m_data->m_nodes[i].data = new_keys; } } } void nv::mesh_nodes_creator::transform( float scale, const mat3& r33 ) { mat3 ri33 = glm::inverse( r33 ); mat4 pre_transform ( scale * r33 ); mat4 post_transform( 1.f/scale * ri33 ); for ( size_t i = 0; i < m_data->get_count(); ++i ) { mesh_node_data& node = m_data->m_nodes[i]; node.transform = pre_transform * node.transform * post_transform; if ( node.data ) { key_data* kdata = node.data; for ( size_t c = 0; c < kdata->get_channel_count(); ++c ) { const raw_data_channel* channel = kdata->get_channel(c); size_t key_size = channel->desc.element_size(); for ( size_t n = 0; n < channel->count; ++n ) { transform_key_raw( channel->desc, channel->data + n * key_size, scale, r33, ri33 ); } } } } } void nv::mesh_data_creator::transform( float scale, const mat3& r33 ) { vec3 vertex_offset = vec3(); mat3 vertex_transform = scale * r33; mat3 normal_transform = r33; for ( uint32 c = 0; c < m_data->get_channel_count(); ++c ) { const raw_data_channel* channel = m_data->get_channel(c); const data_descriptor& desc = channel->desc; uint8* raw_data = channel->data; uint32 vtx_size = desc.element_size(); int p_offset = -1; int n_offset = -1; int t_offset = -1; for ( const auto& cslot : desc ) switch ( cslot.vslot ) { case slot::POSITION : if ( cslot.etype == FLOAT_VECTOR_3 ) p_offset = int( cslot.offset ); break; case slot::NORMAL : if ( cslot.etype == FLOAT_VECTOR_3 ) n_offset = int( cslot.offset ); break; case slot::TANGENT : if ( cslot.etype == FLOAT_VECTOR_4 ) t_offset = int( cslot.offset ); break; default : break; } if ( p_offset != -1 ) for ( uint32 i = 0; i < channel->count; i++) { vec3& p = *reinterpret_cast( raw_data + vtx_size*i + p_offset ); p = vertex_transform * p + vertex_offset; } if ( n_offset != -1 ) for ( uint32 i = 0; i < channel->count; i++) { vec3& n = *reinterpret_cast( raw_data + vtx_size*i + n_offset ); n = glm::normalize( normal_transform * n ); } if ( t_offset != -1 ) for ( uint32 i = 0; i < channel->count; i++) { vec4& t = *reinterpret_cast(raw_data + vtx_size*i + t_offset ); t = vec4( glm::normalize( normal_transform * vec3(t) ), t[3] ); } } } struct vertex_g { nv::vec4 tangent; }; void nv::mesh_data_creator::flip_normals() { int ch_n = m_data->get_channel_index( slot::NORMAL ); size_t n_offset = 0; if ( ch_n == -1 ) return; raw_data_channel* channel = m_data->m_channels[ unsigned( ch_n ) ]; for ( const auto& cslot : channel->desc ) if ( cslot.vslot == slot::NORMAL ) { n_offset = cslot.offset; } for ( uint32 i = 0; i < channel->count; ++i ) { vec3& normal = *reinterpret_cast( channel->data + channel->desc.element_size() * i + n_offset ); normal = -normal; } } void nv::mesh_data_creator::generate_tangents() { int p_offset = -1; int n_offset = -1; int t_offset = -1; datatype i_type = NONE; uint32 n_channel_index = 0; const raw_data_channel* p_channel = nullptr; raw_data_channel* n_channel = nullptr; const raw_data_channel* t_channel = nullptr; const raw_data_channel* i_channel = nullptr; for ( uint32 c = 0; c < m_data->get_channel_count(); ++c ) { const raw_data_channel* channel = m_data->get_channel(c); for ( const auto& cslot : channel->desc ) switch ( cslot.vslot ) { case slot::POSITION : if ( cslot.etype == FLOAT_VECTOR_3 ) { p_offset = int( cslot.offset ); p_channel = channel; } break; case slot::NORMAL : if ( cslot.etype == FLOAT_VECTOR_3 ) { n_offset = int( cslot.offset ); n_channel = m_data->m_channels[ c ]; n_channel_index = c; } break; case slot::TEXCOORD : if ( cslot.etype == FLOAT_VECTOR_2 ) { t_offset = int( cslot.offset ); t_channel = channel; } break; case slot::INDEX : { i_type = cslot.etype; i_channel = channel; } break; case slot::TANGENT : return; default : break; } } if ( !p_channel || !n_channel || !t_channel ) return; if ( p_channel->count != n_channel->count || p_channel->count % t_channel->count != 0 || ( i_type != UINT && i_type != USHORT && i_type != NONE ) ) { return; } raw_data_channel* g_channel = raw_data_channel::create( p_channel->count ); vec4* tangents = reinterpret_cast( g_channel->data ); vec3* tangents2 = new vec3[ p_channel->count ]; uint32 tri_count = i_channel ? i_channel->count / 3 : t_channel->count / 3; uint32 vtx_count = p_channel->count; uint32 sets = p_channel->count / t_channel->count; for ( unsigned int i = 0; i < tri_count; ++i ) { uint32 ti0 = 0; uint32 ti1 = 0; uint32 ti2 = 0; if ( i_type == UINT ) { const uint32* idata = reinterpret_cast( i_channel->data ); ti0 = idata[ i * 3 ]; ti1 = idata[ i * 3 + 1 ]; ti2 = idata[ i * 3 + 2 ]; } else if ( i_type == USHORT ) { const uint16* idata = reinterpret_cast( i_channel->data ); ti0 = idata[ i * 3 ]; ti1 = idata[ i * 3 + 1 ]; ti2 = idata[ i * 3 + 2 ]; } else // if ( i_type == NONE ) { ti0 = i * 3; ti1 = i * 3 + 1; ti2 = i * 3 + 2; } const vec2& w1 = *reinterpret_cast(t_channel->data + t_channel->desc.element_size()*ti0 + t_offset ); const vec2& w2 = *reinterpret_cast(t_channel->data + t_channel->desc.element_size()*ti1 + t_offset ); const vec2& w3 = *reinterpret_cast(t_channel->data + t_channel->desc.element_size()*ti2 + t_offset ); vec2 st1 = w3 - w1; vec2 st2 = w2 - w1; float stst = (st1.x * st2.y - st2.x * st1.y); float coef = ( stst != 0.0f ? 1.0f / stst : 0.0f ); for ( uint32 set = 0; set < sets; ++set ) { uint32 nti0 = t_channel->count * set + ti0; uint32 nti1 = t_channel->count * set + ti1; uint32 nti2 = t_channel->count * set + ti2; vec3 v1 = *reinterpret_cast(p_channel->data + p_channel->desc.element_size()*nti0 + p_offset ); vec3 v2 = *reinterpret_cast(p_channel->data + p_channel->desc.element_size()*nti1 + p_offset ); vec3 v3 = *reinterpret_cast(p_channel->data + p_channel->desc.element_size()*nti2 + p_offset ); vec3 xyz1 = v3 - v1; vec3 xyz2 = v2 - v1; //vec3 normal = glm::cross( xyz1, xyz2 ); // //vtcs[ ti0 ].normal += normal; //vtcs[ ti1 ].normal += normal; //vtcs[ ti2 ].normal += normal; vec3 tangent = (( xyz1 * st2.y ) - ( xyz2 * st1.y )) * coef; vec3 tangent2 = (( xyz2 * st1.x ) - ( xyz1 * st2.x )) * coef; tangents[nti0] = vec4( vec3( tangents[nti0] ) + tangent, 0 ); tangents[nti1] = vec4( vec3( tangents[nti1] ) + tangent, 0 ); tangents[nti2] = vec4( vec3( tangents[nti2] ) + tangent, 0 ); tangents2[nti0] += tangent2; tangents2[nti1] += tangent2; tangents2[nti2] += tangent2; } } for ( unsigned int i = 0; i < vtx_count; ++i ) { const vec3 n = *reinterpret_cast( n_channel->data + n_channel->desc.element_size()*i + n_offset ); const vec3 t = vec3(tangents[i]); if ( ! ( t.x == 0.0f && t.y == 0.0f && t.z == 0.0f ) ) { tangents[i] = vec4( glm::normalize(t - n * glm::dot( n, t )), 0.0f ); tangents[i][3] = (glm::dot(glm::cross(n, t), tangents2[i]) < 0.0f) ? -1.0f : 1.0f; } } delete tangents2; m_data->m_channels[ n_channel_index ] = merge_channels( n_channel, g_channel ); delete n_channel; delete g_channel; } nv::raw_data_channel* nv::mesh_data_creator::merge_channels( raw_data_channel* a, raw_data_channel* b ) { NV_ASSERT( a->count == b->count, "merge_channel - bad channels!" ); data_descriptor adesc = a->desc; data_descriptor bdesc = b->desc; uint32 count = a->count; data_descriptor desc = a->desc; for ( auto bslot : bdesc ) { desc.push_slot( bslot.etype, bslot.vslot ); } uint8* data = new uint8[ count * desc.element_size() ]; for ( uint32 i = 0; i < count; ++i ) { raw_copy_n( a->data + i * adesc.element_size(), adesc.element_size(), data + i*desc.element_size() ); raw_copy_n( b->data + i * bdesc.element_size(), bdesc.element_size(), data + i*desc.element_size() + adesc.element_size() ); } raw_data_channel* result = new raw_data_channel; result->count = count; result->desc = desc; result->data = data; return result; } nv::raw_data_channel* nv::mesh_data_creator::append_channels( raw_data_channel* a, raw_data_channel* b, uint32 frame_count ) { if ( a->desc != b->desc ) return nullptr; if ( a->count % frame_count != 0 ) return nullptr; if ( b->count % frame_count != 0 ) return nullptr; size_t vtx_size = a->desc.element_size(); uint8* data = new uint8[ ( a->count + b->count ) * vtx_size ]; if ( frame_count == 1 ) { size_t a_size = vtx_size * a->count; raw_copy_n( a->data, a_size, data ); raw_copy_n( b->data, vtx_size * b->count, data + a_size ); } else { size_t frame_size_a = ( a->count / frame_count ) * vtx_size; size_t frame_size_b = ( b->count / frame_count ) * vtx_size; size_t pos_a = 0; size_t pos_b = 0; size_t pos = 0; for ( size_t i = 0; i < frame_count; ++i ) { raw_copy_n( a->data + pos_a, frame_size_a, data + pos ); raw_copy_n( b->data + pos_b, frame_size_b, data + pos + frame_size_a ); pos_a += frame_size_a; pos_b += frame_size_b; pos += frame_size_a + frame_size_b; } } raw_data_channel* result = new raw_data_channel; result->count = a->element_count() + b->element_count(); result->desc = a->descriptor(); result->data = data; return result; } bool nv::mesh_data_creator::is_same_format( mesh_data* other ) { if ( m_data->get_channel_count() != other->get_channel_count() ) return false; for ( uint32 c = 0; c < m_data->get_channel_count(); ++c ) { if ( m_data->get_channel(c)->descriptor() != other->get_channel(c)->descriptor() ) return false; } return true; } void nv::mesh_data_creator::merge( mesh_data* other ) { if ( !is_same_format( other ) ) return; int ch_pi = m_data->get_channel_index( slot::POSITION ); int ch_ti = m_data->get_channel_index( slot::TEXCOORD ); int och_pi = other->get_channel_index( slot::POSITION ); int och_ti = other->get_channel_index( slot::TEXCOORD ); if ( ch_pi == -1 || ch_ti == -1 ) return; size_t size = m_data->m_channels[ unsigned(ch_ti) ]->element_count(); size_t osize = other->m_channels[ unsigned(och_ti) ]->element_count(); size_t count = m_data->m_channels[ unsigned(ch_pi) ]->element_count(); size_t ocount = other->m_channels[ unsigned(och_pi) ]->element_count(); if ( count % size != 0 || ocount % osize != 0 ) return; if ( count / size != ocount / osize ) return; for ( uint32 c = 0; c < m_data->get_channel_count(); ++c ) { raw_data_channel* old = m_data->m_channels[c]; size_t frame_count = ( old->get_buffer_type() == INDEX_BUFFER ? 1 : old->element_count() / size ); m_data->m_channels[c] = append_channels( old, other->m_channels[c], frame_count ); NV_ASSERT( m_data->m_channels[c], "Merge problem!" ); if ( old->get_buffer_type() == INDEX_BUFFER ) { switch ( old->desc[0].etype ) { case USHORT : { NV_ASSERT( size + osize < uint16(-1), "Index out of range!" ); uint16* indexes = reinterpret_cast( m_data->m_channels[c]->data ); for ( uint16 i = uint16( old->element_count() ); i < m_data->m_channels[c]->element_count(); ++i ) indexes[i] += uint16( size ); } break; case UINT : { uint32* indexes = reinterpret_cast( m_data->m_channels[c]->data ); for ( uint32 i = old->element_count(); i < m_data->m_channels[c]->element_count(); ++i ) indexes[i] += size; } break; default : NV_ASSERT( false, "Unsupported index type!" ); break; } m_data->m_index_channel = m_data->m_channels[c]; } delete old; } }