source: trunk/src/core/random.cc @ 541

Last change on this file since 541 was 534, checked in by epyon, 8 years ago

CONTINUED:

  • getting rid of size_t
  • datatypes now restricted to uint32 size
  • 64-bit compatibility
  • copyright updates where modified
File size: 7.6 KB
Line 
1// Copyright (C) 2012-2017 ChaosForge Ltd
2// http://chaosforge.org/
3//
4// This file is part of Nova libraries.
5// For conditions of distribution and use, see copying.txt file in root folder.
6
7#include "nv/core/random.hh"
8#include "nv/core/time.hh"
9#include "nv/stl/utility/common.hh"
10
11using namespace nv;
12
13static const uint32 mt_upper_mask = 0x80000000UL;
14static const uint32 mt_lower_mask = 0x7FFFFFFFUL;
15static const uint32 mt_full_mask  = 0xFFFFFFFFUL;
16static const uint32 mt_matrix_a   = 0x9908B0DFUL;
17
18#define NV_MT_MIXBITS(u, v) ( uint32( (u) & mt_upper_mask) | uint32( (v) & mt_lower_mask) )
19#define NV_MT_TWIST(u, v)  ( uint32(NV_MT_MIXBITS(u, v) >> uint32(1)) ^ uint32( (v) & uint32(1) ? mt_matrix_a : uint32(0)) )
20
21nv::random& random::get()
22{
23        static random default_rng;
24        return default_rng;
25}
26
27void random_mersenne::mt_init( uint32 seed )
28{
29        m_state[0] = static_cast<uint32>( seed & mt_full_mask );
30        for ( uint32 i = 1; i < mersenne_n; i++ )
31        {
32                m_state[i]  = ( 1812433253UL * ( m_state[i - 1] ^ ( m_state[i - 1] >> 30 ) ) + i );
33                m_state[i] &= mt_full_mask;
34        }
35
36        m_remaining = 0;
37        m_next      = nullptr;
38        m_seeded    = 1;
39}
40
41
42void random_mersenne::mt_update()
43{
44        uint32 *p = m_state;
45        constexpr int m = mersenne_m;
46        constexpr int n = mersenne_n;
47
48        for ( int count = ( n - m + 1 ); --count; p++ )
49                *p = p[mersenne_m] ^ NV_MT_TWIST( p[0], p[1] );
50
51        for ( int count = mersenne_m; --count; p++ )
52        {
53                *p = p[m - n] ^ NV_MT_TWIST( p[0], p[1] );
54        }
55
56        *p = p[m - n] ^ NV_MT_TWIST( p[0], m_state[0] );
57
58        m_remaining = mersenne_n;
59        m_next      = m_state;
60}
61
62
63uint32 random_mersenne::mt_uint32()
64{
65        uint32 r;
66
67        if ( !m_remaining ) mt_update();
68
69        r = *m_next++;
70        m_remaining--;
71
72        r ^= ( r >> 11 );
73        r ^= ( r << 7 ) & 0x9D2C5680UL;
74        r ^= ( r << 15 ) & 0xEFC60000UL;
75        r ^= ( r >> 18 );
76
77        r &= mt_full_mask;
78
79        return r;
80}
81
82random_mersenne::random_mersenne( random_mersenne::seed_type seed /*= 0 */ )
83        : m_next( nullptr ), m_remaining( 0 ), m_seeded( 0 )
84{
85        mt_init( seed );
86}
87
88random_mersenne::seed_type random_mersenne::set_seed( random_mersenne::seed_type seed /*= 0 */ )
89{
90        mt_init( seed );
91        return seed;
92}
93
94random_mersenne::result_type random_mersenne::rand()
95{
96        return mt_uint32();
97}
98
99random_base::seed_type random_base::randomized_seed()
100{
101        // TODO: this seems off, as it might often seed the same, use general time
102        // instead
103        return narrow_cast< seed_type >( get_ticks() );
104}
105
106nv::vec2 nv::random_base::precise_unit_vec2()
107{
108        f32 angle = frand( math::pi<f32>() * 2.f );
109        return vec2( cos( angle ), sin( angle ) );
110}
111
112nv::vec3 nv::random_base::precise_unit_vec3()
113{
114        f32 cos_theta = frange( -1.0f, 1.0f );
115        f32 sin_theta = sqrt( 1.0f - cos_theta * cos_theta );
116        f32 phi       = frand( 2 * math::pi<f32>() );
117        return vec3(
118                sin_theta * sin(phi),
119                sin_theta * cos(phi),
120                cos_theta
121                );
122}
123
124nv::vec2 nv::random_base::fast_disk_point()
125{
126        f32 r1 = frand();
127        f32 r2 = frand();
128        if ( r1 > r2 ) swap( r1, r2 );
129        f32 rf = 2* math::pi<f32>()*(r1/r2);
130        return vec2( r2*cos( rf ), r2*sin( rf ) );
131}
132
133nv::vec2 nv::random_base::precise_disk_point()
134{
135        f32 r = sqrt( frand() );
136        f32 rangle = frand( math::pi<f32>() );
137        return vec2( r*cos( rangle ), r*sin( rangle ) );
138}
139
140nv::vec3 nv::random_base::fast_sphere_point()
141{
142        f32 rad     = frand();
143        f32 pi      = math::pi<f32>();
144        f32 phi     = asin( frange( -1.0f, 1.0f ) ) + pi*.5f;
145        f32 theta   = frange( 0.0f, 2 * math::pi<f32>() );
146        f32 sin_phi = sin( phi );
147        return vec3(
148                rad * cos(theta) * sin_phi,
149                rad * sin(theta) * sin_phi,
150                rad * cos(phi)
151        );
152}
153
154nv::vec3 nv::random_base::precise_sphere_point()
155{
156        f32 radius = pow( frand(), 1.f/3.f );
157        f32 cos_theta = frange( -1.0f, 1.0f );
158        f32 sin_theta = sqrt( 1.0f - cos_theta * cos_theta );
159        f32 phi       = frange( 0.0f, 2 * math::pi<f32>() );
160        return vec3(
161                radius * sin_theta * sin(phi),
162                radius * sin_theta * cos(phi),
163                radius * cos_theta
164                );
165}
166
167nv::vec2 nv::random_base::precise_ellipse_point( const vec2& radii )
168{
169        vec2 p = range( -radii, radii );
170        vec2 inv_radii  = 1.f / radii;
171        vec2 inv_radii2 = inv_radii * inv_radii;
172        for ( uint32 i = 0; i < 12; ++i )
173        {
174                if ( p.x * p.x * inv_radii2.x + p.y * p.y * inv_radii2.y <= 1.f )
175                {
176                        return p;
177                }
178        }
179        return fast_disk_point() * radii;
180}
181
182nv::vec3 nv::random_base::precise_ellipsoid_point( const vec3& radii )
183{
184        vec3 p = range( -radii, radii );
185        vec3 inv_radii  = 1.f / radii;
186        vec3 inv_radii2 = inv_radii * inv_radii;
187        for ( uint32 i = 0; i < 12; ++i )
188        {
189                if ( p.x * p.x * inv_radii2.x + p.y * p.y * inv_radii2.y + p.z * p.z * inv_radii2.z <= 1.f )
190                {
191                        return p;
192                }
193        }
194        return fast_sphere_point() * radii;
195}
196
197nv::vec2 nv::random_base::fast_hollow_disk_point( f32 iradius, f32 oradius )
198{
199        f32 idist2 = iradius * iradius;
200        f32 odist2 = oradius * oradius;
201        f32 rdist  = sqrt( frange( idist2, odist2 ) );
202        return rdist * precise_unit_vec2();
203}
204
205nv::vec2 nv::random_base::precise_hollow_disk_point( f32 iradius, f32 oradius )
206{
207        return fast_hollow_disk_point( iradius, oradius );
208}
209
210nv::vec3 nv::random_base::fast_hollow_sphere_point( f32 iradius, f32 oradius )
211{
212        f32 idist3 = iradius * iradius * iradius;
213        f32 odist3 = oradius * oradius * oradius;
214        f32 rdist  = pow( frange( idist3, odist3 ), 1.f/3.f );
215        return rdist * precise_unit_vec3();
216}
217
218nv::vec3 nv::random_base::precise_hollow_sphere_point( f32 iradius, f32 oradius )
219{
220        return fast_hollow_sphere_point( iradius, oradius );
221}
222
223
224nv::vec2 nv::random_base::fast_hollow_ellipse_point( const vec2& iradii, const vec2& oradii )
225{
226        vec2 iradii2 = iradii * iradii;
227        vec2 opoint     = ellipse_edge( oradii );
228        vec2 opoint2    = opoint * opoint;
229        vec2 odir       = math::normalize( opoint );
230        f32 odist2    = opoint2.x + opoint2.y;
231
232        f32 low    = iradii2.y * opoint2.x + iradii2.x * opoint2.y;
233        f32 idist2 = ((iradii2.x * iradii2.y) / low ) * odist2;
234
235        f32 rdist     = sqrt( frange( idist2, odist2 ) );
236        return odir * rdist;   
237}
238
239nv::vec2 nv::random_base::precise_hollow_ellipse_point( const vec2& iradii, const vec2& oradii )
240{
241        return fast_hollow_ellipse_point( iradii, oradii );
242}
243
244nv::vec3 nv::random_base::fast_hollow_ellipsoid_point( const vec3& iradii, const vec3& oradii )
245{
246        vec3 iradii2 = iradii * iradii;
247        vec3 opoint     = ellipsoid_edge( oradii );
248        vec3 opoint2    = opoint * opoint;
249        vec3 odir       = math::normalize( opoint );
250        f32 odist2    = opoint2.x + opoint2.y + opoint2.z;
251
252        f32 low    =
253                iradii2.y * iradii2.z * opoint2.x +
254                iradii2.x * iradii2.z * opoint2.y +
255                iradii2.x * iradii2.y * opoint2.z;
256        f32 idist2 = ((iradii2.x * iradii2.y * iradii2.z) / low ) * odist2;
257
258        f32 odist3 = odist2 * sqrt( odist2 );
259        f32 idist3 = idist2 * sqrt( idist2 );
260
261        f32 rdist     = pow( frange( idist3, odist3 ), 1.f/3.f );
262        return odir * rdist;   
263}
264
265nv::vec3 nv::random_base::precise_hollow_ellipsoid_point( const vec3& iradii, const vec3& oradii )
266{
267        return fast_hollow_ellipsoid_point( iradii, oradii );
268}
269
270nv::random_xor128::random_xor128( seed_type seed /*= randomized_seed() */ )
271{
272        set_seed( seed );
273}
274
275nv::random_base::seed_type nv::random_xor128::set_seed( seed_type seed /*= 0 */ )
276{
277        if ( seed == 0 ) seed = randomized_seed();
278        uint32 s = uint32( 4294967296 - seed );
279        m_state[0] = 123456789 * s;
280        m_state[1] = 362436069 * s;
281        m_state[2] = 521288629 * s;
282        m_state[3] = 88675123 * s;
283        return seed;
284}
285
286nv::random_base::result_type nv::random_xor128::rand()
287{
288        uint32 t = m_state[0];
289        t ^= t << 11;
290        t ^= t >> 8;
291        m_state[0] = m_state[1]; m_state[1] = m_state[2]; m_state[2] = m_state[3];
292        m_state[3] ^= m_state[3] >> 19;
293        m_state[3] ^= t;
294        return m_state[3];
295}
Note: See TracBrowser for help on using the repository browser.