1 | // Copyright (C) 2014 ChaosForge Ltd
|
---|
2 | // http://chaosforge.org/
|
---|
3 | //
|
---|
4 | // This file is part of NV Libraries.
|
---|
5 | // For conditions of distribution and use, see copyright notice in nv.hh
|
---|
6 |
|
---|
7 | /**
|
---|
8 | * @file array.hh
|
---|
9 | * @author Kornel Kisielewicz epyon@chaosforge.org
|
---|
10 | * @brief exception free array classes
|
---|
11 | */
|
---|
12 |
|
---|
13 | #ifndef NV_CORE_ARRAY_HH
|
---|
14 | #define NV_CORE_ARRAY_HH
|
---|
15 |
|
---|
16 | #include <nv/core/common.hh>
|
---|
17 | #include <nv/stl/memory.hh>
|
---|
18 | #include <nv/stl/iterator.hh>
|
---|
19 | #include <nv/stl/utility.hh>
|
---|
20 | #include <vector>
|
---|
21 | #include <algorithm>
|
---|
22 | #include <array>
|
---|
23 |
|
---|
24 | namespace nv
|
---|
25 | {
|
---|
26 | using std::vector;
|
---|
27 |
|
---|
28 | template< typename T, size_t N >
|
---|
29 | class array : public detail::pointer_iterators < array< T, N >, T, false >
|
---|
30 | {
|
---|
31 | public:
|
---|
32 | typedef T value_type;
|
---|
33 | typedef size_t size_type;
|
---|
34 | typedef ptrdiff_t difference_type;
|
---|
35 | typedef T* pointer;
|
---|
36 | typedef const T* const_pointer;
|
---|
37 | typedef T* iterator;
|
---|
38 | typedef const T* const_iterator;
|
---|
39 | typedef T& reference;
|
---|
40 | typedef const T& const_reference;
|
---|
41 | typedef nv::reverse_iterator<iterator> reverse_iterator;
|
---|
42 | typedef nv::reverse_iterator<const_iterator> const_reverse_iterator;
|
---|
43 |
|
---|
44 | static const size_type SIZE = N;
|
---|
45 | static const size_type ELEMENT_SIZE = sizeof( value_type );
|
---|
46 |
|
---|
47 | inline const_pointer data() const { return m_data; }
|
---|
48 | inline pointer data() { return m_data; }
|
---|
49 | inline size_type size() const { return SIZE; }
|
---|
50 | inline bool empty() const { return false; }
|
---|
51 | inline size_type raw_size() const { return SIZE * sizeof( T ); }
|
---|
52 | inline const char* raw_data() const { return (const char*)m_data; }
|
---|
53 | inline char* raw_data() { return (char*)m_data; }
|
---|
54 |
|
---|
55 | inline reference front() { NV_ASSERT( !empty(), "front() called on empty data!" ); return m_data[0]; }
|
---|
56 | inline const_reference front() const { NV_ASSERT( !empty(), "front() called on empty data!" ); return m_data[0]; }
|
---|
57 | inline reference back() { NV_ASSERT( !empty(), "front() called on empty data!" ); return m_data[SIZE - 1]; }
|
---|
58 | inline const_reference back() const { NV_ASSERT( !empty(), "front() called on empty data!" ); return m_data[SIZE - 1]; }
|
---|
59 |
|
---|
60 | reference operator[]( size_type i )
|
---|
61 | {
|
---|
62 | NV_ASSERT( i < N, "Out of range" );
|
---|
63 | return this->m_data[i];
|
---|
64 | }
|
---|
65 |
|
---|
66 | const_reference operator[]( size_type i ) const
|
---|
67 | {
|
---|
68 | NV_ASSERT( i < N, "Out of range" );
|
---|
69 | return this->m_data[i];
|
---|
70 | }
|
---|
71 |
|
---|
72 | reference at( size_type i )
|
---|
73 | {
|
---|
74 | NV_ASSERT( i < N, "Out of range" );
|
---|
75 | return this->m_data[i];
|
---|
76 | }
|
---|
77 |
|
---|
78 | const_reference at( size_type i ) const
|
---|
79 | {
|
---|
80 | NV_ASSERT( i < N, "Out of range" );
|
---|
81 | return this->m_data[i];
|
---|
82 | }
|
---|
83 |
|
---|
84 | void swap( array<value_type, N>& y )
|
---|
85 | {
|
---|
86 | for ( size_type i = 0; i < N; ++i )
|
---|
87 | nv::swap( m_data[i], y.m_data[i] );
|
---|
88 | }
|
---|
89 |
|
---|
90 | void assign( const value_type& value ) { fill( value ); }
|
---|
91 |
|
---|
92 | void fill( const value_type& value )
|
---|
93 | {
|
---|
94 | std::fill_n( this->begin(), this->size(), value );
|
---|
95 | }
|
---|
96 |
|
---|
97 | private:
|
---|
98 | value_type m_data[SIZE];
|
---|
99 | };
|
---|
100 |
|
---|
101 | template< typename T, size_t N >
|
---|
102 | inline void swap( array<T, N>& lhs, array<T, N>& rhs )
|
---|
103 | {
|
---|
104 | lhs.swap( rhs );
|
---|
105 | }
|
---|
106 |
|
---|
107 | // template < typename T, typename ContainerAllocator >
|
---|
108 | // class vector_base
|
---|
109 | // {
|
---|
110 | // public:
|
---|
111 | // typedef T value_type;
|
---|
112 | // typedef size_t size_type;
|
---|
113 | // typedef ptrdiff_t difference_type;
|
---|
114 | // typedef T* pointer;
|
---|
115 | // typedef const T* const_pointer;
|
---|
116 | // typedef T* iterator;
|
---|
117 | // typedef const T* const_iterator;
|
---|
118 | // typedef T& reference;
|
---|
119 | // typedef const T& const_reference;
|
---|
120 | //
|
---|
121 | // protected:
|
---|
122 | // ContainerAllocator m_storage;
|
---|
123 | // };
|
---|
124 |
|
---|
125 | // template< typename T, size_t N >
|
---|
126 | // class static_vector : public detail::pointer_iterators < static_vector< T, N >, T, false >
|
---|
127 | // {
|
---|
128 | // public:
|
---|
129 | // typedef T value_type;
|
---|
130 | // typedef size_t size_type;
|
---|
131 | // typedef ptrdiff_t difference_type;
|
---|
132 | // typedef T* pointer;
|
---|
133 | // typedef const T* const_pointer;
|
---|
134 | // typedef T* iterator;
|
---|
135 | // typedef const T* const_iterator;
|
---|
136 | // typedef T& reference;
|
---|
137 | // typedef const T& const_reference;
|
---|
138 | // typedef nv::reverse_iterator<iterator> reverse_iterator;
|
---|
139 | // typedef nv::reverse_iterator<const_iterator> const_reverse_iterator;
|
---|
140 | //
|
---|
141 | // static_vector() : m_size(0) {}
|
---|
142 | //
|
---|
143 | // inline const_pointer data() const { return m_data; }
|
---|
144 | // inline pointer data() { return m_data; }
|
---|
145 | // inline size_type size() const { return m_size; }
|
---|
146 | // inline bool empty() const { return !m_size; }
|
---|
147 | // inline size_type raw_size() const { return N * sizeof( T ); }
|
---|
148 | // inline const char* raw_data() const { return (const char*)m_data; }
|
---|
149 | // inline char* raw_data() { return (char*)m_data; }
|
---|
150 | //
|
---|
151 | // inline reference front() { NV_ASSERT( !empty(), "front() called on empty data!" ); return m_data[0]; }
|
---|
152 | // inline const_reference front() const { NV_ASSERT( !empty(), "front() called on empty data!" ); return m_data[0]; }
|
---|
153 | // inline reference back() { NV_ASSERT( !empty(), "front() called on empty data!" ); return m_data[m_size - 1]; }
|
---|
154 | // inline const_reference back() const { NV_ASSERT( !empty(), "front() called on empty data!" ); return m_data[m_size - 1]; }
|
---|
155 | // protected:
|
---|
156 | // value_type m_data[N];
|
---|
157 | // size_type m_size;
|
---|
158 | // };
|
---|
159 |
|
---|
160 | template < typename T, typename ContainerAllocator >
|
---|
161 | class array_base : public detail:: pointer_iterators < array_base< T, ContainerAllocator >, T, false >
|
---|
162 | {
|
---|
163 | public:
|
---|
164 | typedef T value_type;
|
---|
165 | typedef size_t size_type;
|
---|
166 | typedef ptrdiff_t difference_type;
|
---|
167 | typedef T* pointer;
|
---|
168 | typedef const T* const_pointer;
|
---|
169 | typedef T* iterator;
|
---|
170 | typedef const T* const_iterator;
|
---|
171 | typedef T& reference;
|
---|
172 | typedef const T& const_reference;
|
---|
173 | typedef nv::reverse_iterator<iterator> reverse_iterator;
|
---|
174 | typedef nv::reverse_iterator<const_iterator> const_reverse_iterator;
|
---|
175 |
|
---|
176 | inline array_base() : m_storage() {}
|
---|
177 | inline array_base( pointer a_data, size_t a_size )
|
---|
178 | {
|
---|
179 |
|
---|
180 | }
|
---|
181 | inline const_pointer data() const { return m_storage.data(); }
|
---|
182 | inline pointer data() { return m_storage.data(); }
|
---|
183 | inline size_t size() const { return m_storage.size(); }
|
---|
184 | inline bool empty() const { return m_storage.size() != 0; }
|
---|
185 | inline size_type raw_size() const { return sizeof( T ) * m_storage.size(); }
|
---|
186 | inline const char* raw_data() const { return (const char*)m_storage.data(); }
|
---|
187 | inline char* raw_data() { return (char*)m_storage.data(); }
|
---|
188 |
|
---|
189 | inline reference front() { NV_ASSERT( !empty(), "front() called on empty data!" ); return m_storage.data()[0]; }
|
---|
190 | inline const_reference front() const { NV_ASSERT( !empty(), "front() called on empty data!" ); return m_storage.data()[0]; }
|
---|
191 | inline reference back() { NV_ASSERT( !empty(), "front() called on empty data!" ); return m_storage.data()[size() - 1]; }
|
---|
192 | inline const_reference back() const { NV_ASSERT( !empty(), "front() called on empty data!" ); return m_storage.data()[size() - 1]; }
|
---|
193 | protected:
|
---|
194 | void push_values( size_type n, const value_type& value )
|
---|
195 | {
|
---|
196 |
|
---|
197 | }
|
---|
198 | ContainerAllocator m_storage;
|
---|
199 | };
|
---|
200 |
|
---|
201 | template< class T >
|
---|
202 | class dynamic_array : public detail::data_base< T, false, 0 >
|
---|
203 | {
|
---|
204 | public:
|
---|
205 | typedef T value_type;
|
---|
206 | typedef T* iterator;
|
---|
207 | typedef const T* const_iterator;
|
---|
208 | typedef T& reference;
|
---|
209 | typedef const T& const_reference;
|
---|
210 | typedef size_t size_type;
|
---|
211 | typedef ptrdiff_t difference_type;
|
---|
212 |
|
---|
213 | typedef nv::reverse_iterator<iterator> reverse_iterator;
|
---|
214 | typedef nv::reverse_iterator<const_iterator> const_reverse_iterator;
|
---|
215 |
|
---|
216 | dynamic_array() : detail::data_base< T, false, 0 >() {}
|
---|
217 | // : m_data( nullptr ), m_size(0) {}
|
---|
218 | explicit dynamic_array( size_type new_size ) : detail::data_base< T, false, 0 >( new value_type[new_size], new_size ) {}
|
---|
219 | // : m_data( new value_type[ new_size ] ), m_size( new_size ) {}
|
---|
220 | dynamic_array( const value_type& value, size_type size ) : detail::data_base< T, false, 0 >()
|
---|
221 | // : m_data( nullptr ), m_size(0)
|
---|
222 | { assign( value, size ); }
|
---|
223 | dynamic_array( const_iterator values, size_type size ) : detail::data_base< T, false, 0 >()
|
---|
224 | // : m_data( nullptr ), m_size(0)
|
---|
225 | { assign( values, size ); }
|
---|
226 |
|
---|
227 | void resize( size_type new_size )
|
---|
228 | {
|
---|
229 | if ( new_size != this->m_size )
|
---|
230 | {
|
---|
231 | value_type* old_data = this->m_data;
|
---|
232 | this->m_data = new_size > 0 ? new value_type[new_size] : nullptr;
|
---|
233 | if ( old_data && this->m_data )
|
---|
234 | {
|
---|
235 | std::copy_n( old_data, new_size > this->m_size ? this->m_size : new_size, this->m_data );
|
---|
236 | }
|
---|
237 | delete[] old_data;
|
---|
238 | this->m_size = new_size;
|
---|
239 | }
|
---|
240 | }
|
---|
241 |
|
---|
242 | // iterator begin() { return m_data; }
|
---|
243 | // const_iterator begin() const { return m_data; }
|
---|
244 | // const_iterator cbegin() const { return m_data; }
|
---|
245 | //
|
---|
246 | // iterator end() { return m_data+m_size; }
|
---|
247 | // const_iterator end() const { return m_data+m_size; }
|
---|
248 | // const_iterator cend() const { return m_data+m_size; }
|
---|
249 | //
|
---|
250 | // reverse_iterator rbegin() { return reverse_iterator( end() ); }
|
---|
251 | // const_reverse_iterator rbegin() const { return const_reverse_iterator( end() ); }
|
---|
252 | // const_reverse_iterator crbegin() const { return const_reverse_iterator( end() ); }
|
---|
253 | //
|
---|
254 | // reverse_iterator rend() { return reverse_iterator( begin() ); }
|
---|
255 | // const_reverse_iterator rend() const { return const_reverse_iterator( begin() ); }
|
---|
256 | // const_reverse_iterator crend() const { return const_reverse_iterator( begin() ); }
|
---|
257 |
|
---|
258 | reference operator[]( size_type i )
|
---|
259 | {
|
---|
260 | NV_ASSERT( i < this->m_size, "Out of range" );
|
---|
261 | return this->m_data[i];
|
---|
262 | }
|
---|
263 |
|
---|
264 | const_reference operator[]( size_type i ) const
|
---|
265 | {
|
---|
266 | NV_ASSERT( i < this->m_size, "Out of range" );
|
---|
267 | return this->m_data[i];
|
---|
268 | }
|
---|
269 |
|
---|
270 | // reference front() { return m_data[0]; }
|
---|
271 | // const_reference front() const { return m_data[0]; }
|
---|
272 | // reference back() { return m_data[m_size-1]; }
|
---|
273 | // const_reference back() const { return m_data[m_size-1]; }
|
---|
274 | //
|
---|
275 | // size_type size() const { return m_size; }
|
---|
276 | // bool empty() const { return m_size == 0; }
|
---|
277 | // static size_type max_size() { return numeric_limits< size_type >::max(); }
|
---|
278 | // const value_type* data() const { return m_data; }
|
---|
279 | // value_type* data() { return m_data; }
|
---|
280 | //
|
---|
281 | // size_type raw_size() const { return m_size * ELEMENT_SIZE; }
|
---|
282 | // const char* raw_data() const { return (const char*)m_data; }
|
---|
283 | // char* raw_data() { return (char*)m_data; }
|
---|
284 |
|
---|
285 | void assign( const value_type& value ) { std::fill_n( this->begin(), this->size(), value ); }
|
---|
286 | void assign( const value_type& value, size_type new_size )
|
---|
287 | {
|
---|
288 | resize( new_size );
|
---|
289 | std::fill_n( this->begin(), this->size(), value );
|
---|
290 | }
|
---|
291 | void assign( const_iterator values, size_type new_size )
|
---|
292 | {
|
---|
293 | resize( new_size );
|
---|
294 | std::copy_n( values, this->size(), this->m_data );
|
---|
295 | }
|
---|
296 |
|
---|
297 | ~dynamic_array() { delete[] this->m_data; }
|
---|
298 |
|
---|
299 | static const size_type ELEMENT_SIZE = sizeof(T);
|
---|
300 | };
|
---|
301 |
|
---|
302 |
|
---|
303 |
|
---|
304 | }
|
---|
305 |
|
---|
306 | #endif // NV_CORE_ARRAY_HH |
---|