1 | // Copyright (C) 2015-2016 ChaosForge Ltd
|
---|
2 | // http://chaosforge.org/
|
---|
3 | //
|
---|
4 | // This file is part of Nova libraries.
|
---|
5 | // For conditions of distribution and use, see copying.txt file in root folder.
|
---|
6 |
|
---|
7 | // WARNING: this file is explicitly designed to fuck with your brain
|
---|
8 |
|
---|
9 | #ifndef NV_INTERFACE_INTERPOLATE_HH
|
---|
10 | #define NV_INTERFACE_INTERPOLATE_HH
|
---|
11 |
|
---|
12 | #include <nv/common.hh>
|
---|
13 | #include <nv/core/transform.hh>
|
---|
14 | #include <nv/stl/math.hh>
|
---|
15 | #include <nv/interface/data_descriptor.hh>
|
---|
16 |
|
---|
17 | namespace nv
|
---|
18 | {
|
---|
19 |
|
---|
20 | template < typename T >
|
---|
21 | struct no_interpolator
|
---|
22 | {
|
---|
23 | inline static T interpolate( float, const T& lhs, const T& ) { return lhs; }
|
---|
24 | inline static T interpolate( float, const T& , const T& v1, const T& , const T& ) { return v1; }
|
---|
25 | };
|
---|
26 |
|
---|
27 | template < typename T >
|
---|
28 | struct linear_interpolator
|
---|
29 | {
|
---|
30 | inline static T interpolate( float f, const T& lhs, const T& rhs ) { return math::lerp( lhs, rhs, f ); }
|
---|
31 | inline static T interpolate( float f, const T& , const T& v1, const T& v2, const T& ) { return math::lerp( v1, v2, f ); }
|
---|
32 | };
|
---|
33 |
|
---|
34 | template < typename T >
|
---|
35 | struct normalized_interpolator
|
---|
36 | {
|
---|
37 | inline static T interpolate( float f, const T& lhs, const T& rhs ) { return math::lerp( lhs, rhs, f ); }
|
---|
38 | inline static T interpolate( float f, const T& , const T& v1, const T& v2, const T& ) { return math::lerp( v1, v2, f ); }
|
---|
39 | };
|
---|
40 |
|
---|
41 | template <>
|
---|
42 | struct normalized_interpolator< quat >
|
---|
43 | {
|
---|
44 | inline static quat interpolate( float f, const quat& lhs, const quat& rhs ) { return math::nlerp( lhs, rhs, f ); }
|
---|
45 | inline static quat interpolate( float f, const quat& , const quat& v1, const quat& v2, const quat& ) { return math::nlerp( v1, v2, f ); }
|
---|
46 | };
|
---|
47 |
|
---|
48 | template <>
|
---|
49 | struct normalized_interpolator< transform >
|
---|
50 | {
|
---|
51 | inline static transform interpolate( float f, const transform& lhs, const transform& rhs ) { return transform( math::lerp( lhs.get_position(), rhs.get_position(), f ), math::nlerp( lhs.get_orientation(), rhs.get_orientation(), f ) ); }
|
---|
52 | inline static transform interpolate( float f, const transform& , const transform& v1, const transform& v2, const transform& ) { return transform( math::lerp( v1.get_position(), v2.get_position(), f ), math::nlerp( v1.get_orientation(), v2.get_orientation(), f ) ); }
|
---|
53 | };
|
---|
54 |
|
---|
55 | template < typename T >
|
---|
56 | struct spherical_interpolator
|
---|
57 | {
|
---|
58 | inline static T interpolate( float f, const T& lhs, const T& rhs ) { return math::lerp( lhs, rhs, f ); }
|
---|
59 | inline static T interpolate( float f, const T& , const T& v1, const T& v2, const T& ) { return math::lerp( v1, v2, f ); }
|
---|
60 | };
|
---|
61 |
|
---|
62 | template <>
|
---|
63 | struct spherical_interpolator< quat >
|
---|
64 | {
|
---|
65 | inline static quat interpolate( float f, const quat& lhs, const quat& rhs ) { return math::slerp( lhs, rhs, f ); }
|
---|
66 | inline static quat interpolate( float f, const quat& , const quat& v1, const quat& v2, const quat& ) { return math::slerp( v1, v2, f ); }
|
---|
67 | };
|
---|
68 |
|
---|
69 | template <>
|
---|
70 | struct spherical_interpolator< transform >
|
---|
71 | {
|
---|
72 | inline static transform interpolate( float f, const transform& lhs, const transform& rhs ) { return transform( math::lerp( lhs.get_position(), rhs.get_position(), f ), math::slerp( lhs.get_orientation(), rhs.get_orientation(), f ) ); }
|
---|
73 | inline static transform interpolate( float f, const transform& , const transform& v1, const transform& v2, const transform& ) { return transform( math::lerp( v1.get_position(), v2.get_position(), f ), math::slerp( v1.get_orientation(), v2.get_orientation(), f ) ); }
|
---|
74 | };
|
---|
75 |
|
---|
76 | struct quadratic_interpolator_base
|
---|
77 | {
|
---|
78 | float weights[4];
|
---|
79 |
|
---|
80 | quadratic_interpolator_base( float value )
|
---|
81 | {
|
---|
82 | float interp_squared = value*value;
|
---|
83 | float interp_cubed = interp_squared*value;
|
---|
84 | weights[0] = 0.5f * ( -interp_cubed + 2.0f * interp_squared - value );
|
---|
85 | weights[1] = 0.5f * ( 3.0f * interp_cubed - 5.0f * interp_squared + 2.0f );
|
---|
86 | weights[2] = 0.5f * ( -3.0f * interp_cubed + 4.0f * interp_squared + value );
|
---|
87 | weights[3] = 0.5f * ( interp_cubed - interp_squared );
|
---|
88 | }
|
---|
89 | };
|
---|
90 |
|
---|
91 | template < typename T >
|
---|
92 | struct quadratic_interpolator : public quadratic_interpolator_base
|
---|
93 | {
|
---|
94 | using quadratic_interpolator_base::quadratic_interpolator_base;
|
---|
95 | inline static T interpolate( float f, const T& lhs, const T& rhs ) { return math::lerp( lhs, rhs, f ); }
|
---|
96 | inline T interpolate( float, const T& v0, const T& v1, const T& v2, const T& v3 ) const
|
---|
97 | {
|
---|
98 | return
|
---|
99 | weights[0] * v0 +
|
---|
100 | weights[1] * v1 +
|
---|
101 | weights[2] * v2 +
|
---|
102 | weights[3] * v3;
|
---|
103 | }
|
---|
104 | };
|
---|
105 |
|
---|
106 | template <>
|
---|
107 | struct quadratic_interpolator< quat > : public quadratic_interpolator_base
|
---|
108 | {
|
---|
109 | using quadratic_interpolator_base::quadratic_interpolator_base;
|
---|
110 | inline static quat interpolate( float f, const quat& lhs, const quat& rhs ) { return math::lerp( lhs, rhs, f ); }
|
---|
111 | inline quat interpolate( float, const quat& v0, const quat& v1, const quat& v2, const quat& v3 ) const
|
---|
112 | {
|
---|
113 | float a = dot( v1, v2 ) > 0.0f ? 1.0f : -1.0f;
|
---|
114 | return normalize(
|
---|
115 | weights[0] * v0 +
|
---|
116 | weights[1] * ( a * v1 ) +
|
---|
117 | weights[2] * v2 +
|
---|
118 | weights[3] * v3
|
---|
119 | );
|
---|
120 | }
|
---|
121 | };
|
---|
122 |
|
---|
123 | template <>
|
---|
124 | struct quadratic_interpolator< transform > : public quadratic_interpolator_base
|
---|
125 | {
|
---|
126 | using quadratic_interpolator_base::quadratic_interpolator_base;
|
---|
127 | inline static transform interpolate( float f, const transform& lhs, const transform& rhs ) { return math::lerp( lhs, rhs, f ); }
|
---|
128 | inline transform interpolate( float, const transform& v0, const transform& v1, const transform& v2, const transform& v3 ) const
|
---|
129 | {
|
---|
130 | float a = dot( v1.get_orientation(), v2.get_orientation() ) > 0.0f ? 1.0f : -1.0f;
|
---|
131 | return transform(
|
---|
132 | weights[0] * v0.get_position() +
|
---|
133 | weights[1] * v1.get_position() +
|
---|
134 | weights[2] * v2.get_position() +
|
---|
135 | weights[3] * v3.get_position(),
|
---|
136 | normalize(
|
---|
137 | weights[0] * v0.get_orientation() +
|
---|
138 | weights[1] * ( a * v1.get_orientation() ) +
|
---|
139 | weights[2] * v2.get_orientation() +
|
---|
140 | weights[3] * v3.get_orientation()
|
---|
141 | ) );
|
---|
142 | }
|
---|
143 | };
|
---|
144 |
|
---|
145 | template < typename T >
|
---|
146 | struct squad_interpolator
|
---|
147 | {
|
---|
148 | inline static T interpolate( float f, const T& lhs, const T& rhs ) { return math::slerp( lhs, rhs, f ); }
|
---|
149 | inline static T interpolate( float f, const T& v0, const T& v1, const T& v2, const T& v3 ) { return math::slerp( v1, v2, f ); }
|
---|
150 | };
|
---|
151 |
|
---|
152 | template <>
|
---|
153 | struct squad_interpolator< quat >
|
---|
154 | {
|
---|
155 | inline static quat interpolate( float f, const quat& lhs, const quat& rhs ) { return math::slerp( lhs, rhs, f ); }
|
---|
156 | inline static quat interpolate( float f, const quat& v0, const quat& v1, const quat& v2, const quat& v3 )
|
---|
157 | {
|
---|
158 | return normalize( math::squad(
|
---|
159 | v1, v2,
|
---|
160 | math::intermediate( v0, v1, v2 ),
|
---|
161 | math::intermediate( v1, v2, v3 ),
|
---|
162 | f ) );
|
---|
163 | }
|
---|
164 | };
|
---|
165 |
|
---|
166 | template <>
|
---|
167 | struct squad_interpolator< transform >
|
---|
168 | {
|
---|
169 | inline static transform interpolate( float f, const transform& lhs, const transform& rhs ) { return spherical_interpolator<transform>::interpolate( f, lhs, rhs ); }
|
---|
170 | inline static transform interpolate( float f, const transform& v0, const transform& v1, const transform& v2, const transform& v3 )
|
---|
171 | {
|
---|
172 | return transform(
|
---|
173 | mix( v1.get_position(), v2.get_position(), f ),
|
---|
174 | squad_interpolator< quat >::interpolate( f,
|
---|
175 | v0.get_orientation(),
|
---|
176 | v1.get_orientation(),
|
---|
177 | v2.get_orientation(),
|
---|
178 | v3.get_orientation()
|
---|
179 | ) );
|
---|
180 | }
|
---|
181 | };
|
---|
182 |
|
---|
183 |
|
---|
184 | enum class interpolation
|
---|
185 | {
|
---|
186 | NONE,
|
---|
187 | LINEAR,
|
---|
188 | NORMALIZED,
|
---|
189 | SPHERICAL,
|
---|
190 | QUADRATIC,
|
---|
191 | SQUADRATIC,
|
---|
192 | };
|
---|
193 |
|
---|
194 | template < typename T, typename Interpolator, typename ...Args >
|
---|
195 | T interpolate( float f, const Interpolator& i, Args&&... args )
|
---|
196 | {
|
---|
197 | NV_UNUSED( i );
|
---|
198 | return i.interpolate( f, ::nv::forward<Args>( args )... );
|
---|
199 | }
|
---|
200 |
|
---|
201 | template < typename T, typename ...Args >
|
---|
202 | T interpolate( float f, interpolation i, Args&&... args )
|
---|
203 | {
|
---|
204 | switch ( i )
|
---|
205 | {
|
---|
206 | case interpolation::LINEAR : return linear_interpolator<T>::interpolate( f, ::nv::forward<Args>( args )... );
|
---|
207 | case interpolation::NORMALIZED : return normalized_interpolator<T>::interpolate( f, ::nv::forward<Args>( args )... );
|
---|
208 | case interpolation::SPHERICAL : return spherical_interpolator<T>::interpolate( f, ::nv::forward<Args>( args )... );
|
---|
209 | case interpolation::QUADRATIC : return quadratic_interpolator<T>::interpolate( f, ::nv::forward<Args>( args )... );
|
---|
210 | case interpolation::SQUADRATIC : return squad_interpolator<T>::interpolate( f, ::nv::forward<Args>( args )... );
|
---|
211 | default: case interpolation::NONE : return no_interpolator<T>::interpolate( f, ::nv::forward<Args>( args )... );
|
---|
212 | }
|
---|
213 | }
|
---|
214 |
|
---|
215 | template < typename T, typename ...Args >
|
---|
216 | void interpolate( T& result, float f, interpolation i, Args&&... args )
|
---|
217 | {
|
---|
218 | typedef typename T::value_type value_type;
|
---|
219 | switch ( i )
|
---|
220 | {
|
---|
221 | case interpolation::LINEAR : interpolate_array( result, f, linear_interpolator<value_type>(), ::nv::forward<Args>( args )... ); break;
|
---|
222 | case interpolation::NORMALIZED : interpolate_array( result, f, normalized_interpolator<value_type>(), ::nv::forward<Args>( args )... ); break;
|
---|
223 | case interpolation::SPHERICAL : interpolate_array( result, f, spherical_interpolator<value_type>(), ::nv::forward<Args>( args )... ); break;
|
---|
224 | case interpolation::QUADRATIC : interpolate_array( result, f, quadratic_interpolator<value_type>( f ), ::nv::forward<Args>( args )... ); break;
|
---|
225 | case interpolation::SQUADRATIC : interpolate_array( result, f, squad_interpolator<value_type>(), ::nv::forward<Args>( args )... ); break;
|
---|
226 | default: case interpolation::NONE : interpolate_array( result, f, no_interpolator<value_type>(), ::nv::forward<Args>( args )... ); break;
|
---|
227 | }
|
---|
228 | }
|
---|
229 |
|
---|
230 | template < typename T, typename Interpolator >
|
---|
231 | auto interpolate_extract( float f, const Interpolator& i, uint32 n, const T& a1, const T& a2 )
|
---|
232 | -> typename T::value_type
|
---|
233 | {
|
---|
234 | NV_UNUSED( i );
|
---|
235 | return i.interpolate( f, a1[n], a2[n] );
|
---|
236 | }
|
---|
237 |
|
---|
238 | template < typename T, typename Interpolator >
|
---|
239 | auto interpolate_extract( float f, const Interpolator& i, uint32 n, const T& a0, const T& a1, const T& a2, const T& a3 )
|
---|
240 | -> typename T::value_type
|
---|
241 | {
|
---|
242 | NV_UNUSED( i );
|
---|
243 | return i.interpolate( f, a0[n], a1[n], a2[n], a3[n] );
|
---|
244 | }
|
---|
245 |
|
---|
246 |
|
---|
247 | template < typename T, typename Interpolator, typename ...Args >
|
---|
248 | void interpolate_array( T& result, float f, const Interpolator& in, Args&&... args )
|
---|
249 | {
|
---|
250 | uint32 size = result.size();
|
---|
251 | for ( uint32 n = 0; n < size; ++n )
|
---|
252 | {
|
---|
253 | result[n] = interpolate_extract( f, in, n, ::nv::forward<Args>( args )... );
|
---|
254 | }
|
---|
255 | }
|
---|
256 |
|
---|
257 | template < typename T, typename Interpolator, typename ...Args >
|
---|
258 | void interpolate_array( T& a, float f, const Interpolator& in, const array_view< bool >& mask, Args&&... args )
|
---|
259 | {
|
---|
260 | uint32 size = a.size();
|
---|
261 | for ( uint32 n = 0; n < size; ++n )
|
---|
262 | if ( mask[ n ] )
|
---|
263 | {
|
---|
264 | a[n] = interpolate_extract( f, in, n, ::nv::forward<Args>( args )... );
|
---|
265 | }
|
---|
266 | }
|
---|
267 |
|
---|
268 | template < typename T, typename Interpolator, typename... Args >
|
---|
269 | void interpolate_array( T& result, float f, const Interpolator& in, float blend_factor, interpolation bi, Args&&... args )
|
---|
270 | {
|
---|
271 | typedef typename T::value_type value_type;
|
---|
272 | switch ( bi )
|
---|
273 | {
|
---|
274 | case interpolation::LINEAR : interpolate_blend( result, f, in, blend_factor, linear_interpolator<value_type>(), ::nv::forward<Args>( args )... ); break;
|
---|
275 | case interpolation::NORMALIZED : interpolate_blend( result, f, in, blend_factor, normalized_interpolator<value_type>(), ::nv::forward<Args>( args )... ); break;
|
---|
276 | case interpolation::SPHERICAL : interpolate_blend( result, f, in, blend_factor, spherical_interpolator<value_type>(), ::nv::forward<Args>( args )... ); break;
|
---|
277 | case interpolation::QUADRATIC : interpolate_blend( result, f, in, blend_factor, normalized_interpolator<value_type>(), ::nv::forward<Args>( args )... ); break;
|
---|
278 | case interpolation::SQUADRATIC : interpolate_blend( result, f, in, blend_factor, spherical_interpolator<value_type>(), ::nv::forward<Args>( args )... ); break;
|
---|
279 | default: case interpolation::NONE : interpolate_blend( result, f, in, blend_factor, no_interpolator<value_type>(), ::nv::forward<Args>( args )... ); break;
|
---|
280 | }
|
---|
281 | }
|
---|
282 |
|
---|
283 | template < typename T, typename Interpolator, typename BlendInterpolator, typename... Args >
|
---|
284 | void interpolate_blend( T& a, float f, const Interpolator& in, float blend_factor, const BlendInterpolator& bin, Args&&... args )
|
---|
285 | {
|
---|
286 | NV_UNUSED( bin );
|
---|
287 | typedef typename T::value_type value_type;
|
---|
288 | uint32 size = a.size();
|
---|
289 | for ( uint32 n = 0; n < size; ++n )
|
---|
290 | {
|
---|
291 | value_type temp = interpolate_extract( f, in, n, ::nv::forward<Args>( args )... );
|
---|
292 | a[n] = bin.interpolate( blend_factor, a[n], temp );
|
---|
293 | }
|
---|
294 | }
|
---|
295 |
|
---|
296 | template < typename T, typename Interpolator, typename BlendInterpolator, typename... Args >
|
---|
297 | void interpolate_blend( T& a, float f, const Interpolator& in, float blend_factor, const BlendInterpolator& bin, const array_view< bool >& mask, Args&&... args )
|
---|
298 | {
|
---|
299 | NV_UNUSED( bin );
|
---|
300 | typedef typename T::value_type value_type;
|
---|
301 | uint32 size = a.size();
|
---|
302 | for ( uint32 n = 0; n < size; ++n )
|
---|
303 | if ( mask[n] )
|
---|
304 | {
|
---|
305 | value_type temp = interpolate_extract( f, in, n, ::nv::forward<Args>( args )... );
|
---|
306 | a[n] = bin.interpolate( blend_factor, a[n], temp );
|
---|
307 | }
|
---|
308 | }
|
---|
309 |
|
---|
310 |
|
---|
311 |
|
---|
312 | }
|
---|
313 | #endif // NV_INTERFACE_INTERPOLATE_HH
|
---|